Longitudinal Analysis of the Third-party Authentication Landscape

Anna Vapen, Niklas Carlsson, Nahid Shahmehri
Linköping University, Sweden
Background: Third-party Web Authentication

Web Authentication
- Registration with each website
- Many passwords to remember

Third-party authentication
- Use an existing IDP (identity provider) account to access an RP (relying party)
- Log in less often; Stronger authentication
- Share information between websites
- Information sharing → privacy leaks!
Third-party Authentication Scenario

Relationship between RP and IDP

Relying party (RP)

Identity provider (IDP)

Redirect

Logged in

Authorize access to your account on SoundCloud - Dr...

https://soundcloud.com/connect/client_id:6458135340111032

Sign up

Log in

Sign in with Facebook

Sign in with Google

Or sign in with your email

Your username or email address

Your password

Sign in to SoundCloud with Google Account

Email
Password
Sign in

Redirect

Logged in

Relationship between RP and IDP
Putting the Work in Context

• Our previous work
 – Large-scale study on the RP-IDP landscape (PAM’14)
 – Categorization of RPs (IEEE IC’16)
 – Detailed study on information flows (SEC’15)

• Current longitudinal study
 – How has the RP-IDP landscape changed over time?
 – Privacy implications of landscape structure?
 – Changes in information flows over time?
Contributions

1. **Structural dynamics**
 - Structural model of the RP-IDP landscape

2. **Protocol-based analysis**
 - Protocol- and IDP changes vs. popularity changes

3. **Flow-based analysis** of privacy risks
 - Information leaks between RPs and IDPs
Methodology

• Top 200 most popular websites
 – Measured at ten points in time, April 2012 to April 2015
 – Original top 200 sites from April 2012, over time
 – Current top 200 at a specific time of measurement

• Data flow analysis of sites using top IDPs (2014-2015)
• Facebook permission agreements
Popular IDPs

Top 200 April 2012: 69 RPs and 180 relationships
Same sites, April 2015: +15 RPs and +33 relationships

<table>
<thead>
<tr>
<th>Num. relationships with</th>
<th>April 2012</th>
<th>April 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facebook</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>Google</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>Twitter</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>QQ</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Weibo</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Non-top IDPs</td>
<td>82</td>
<td>76</td>
</tr>
<tr>
<td>% rels. with top IDPs</td>
<td>54.44%</td>
<td>64.32%</td>
</tr>
<tr>
<td>% RPs using top IDP(s)</td>
<td>86.96%</td>
<td>90.48%</td>
</tr>
</tbody>
</table>
Popular IDPs

- **Increased in popularity**: Facebook
- **Decreased in popularity**: China, Russia, Japan, English/US

Change in num RPs 2012-2015 vs. Num RPs per IDP 2012
Structures in the RP-IDP Landscape

High-degree IDP case
- IDP having many RPs
- Top IDPs

High-degree RP case
- RP having many IDPs
- Specialized IDPs

Hybrid case
- Hybrids are both RP and IDP
Structural Model

- We have modeled the landscape as a bipartite graph
 - Mainly high-degree IDP structures
Structural Model

Place HY nodes in layers, based on their main feature
Structural Changes

• Three stages of the landscape:
 1. Adding many IDPs (trying out new technology)
 2. Nested landscape with many hybrids
 3. Simplified landscape

• Regional and language-based differences:
 – English/US Web: Stage 3 with few IDPs
 – Chinese Web: Stage 3, still with many hybrids
 – Russian Web: Entering stage 2!
Example: Structural Changes

Non-Chinese Web April 2012: IDP-like hybrids (few)

Non-Chinese Web April 2015: Emerging Russian HY-structures
Relationship Types

- **Stable**: Kept by the RP, during all 10 snapshots
- **New**: Added after the first snapshot
- **Removed**: Observed in the 1st snapshot and later removed
- **Changing**: Added and removed one of more times
Protocol Usage per Relationship Type

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Total</th>
<th>Stable</th>
<th>New</th>
<th>Removed</th>
<th>Changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>OAuth</td>
<td>140</td>
<td>46%</td>
<td>33%</td>
<td>10%</td>
<td>11%</td>
</tr>
<tr>
<td>OAuth* China</td>
<td>102</td>
<td>25%</td>
<td>28%</td>
<td>15%</td>
<td>31%</td>
</tr>
<tr>
<td>OpenID</td>
<td>40</td>
<td>5%</td>
<td>15%</td>
<td>68%</td>
<td>13%</td>
</tr>
<tr>
<td>OpenID to OAuth</td>
<td>7</td>
<td>86%</td>
<td>0%</td>
<td>0%</td>
<td>14%</td>
</tr>
<tr>
<td>Internal/unknown</td>
<td>14</td>
<td>71%</td>
<td>7%</td>
<td>0%</td>
<td>21%</td>
</tr>
</tbody>
</table>

OAuth protocol: Less privacy preserving than OpenID!

* Parts of the Chinese OAuth relationships may be internal
RP Behavior

The IDP owns the RP (e.g., Google owns Youtube)

All relationships are stable

Removed relationships and/or had a fluctuating set of IDPs

Became RP after 1st measurement

Started with a set of IDPs and added more IDPs

IDP Selection
Non-Chinese Web

- Stable
- New RP
- Expanding
- Reduced/fluctuating
- RP owned by IDP
Information Sharing Between RP and IDPs

Relying party (RP)

IDP1

Permission agreement

IDP2

Flow-based analysis
Types of Information Flows

READ:
Data read from IDP to RP
Rich user data, contents created by the user (images, videos, “likes” etc).

RP acts on behalf of the user on the IDP

WRITE:
Data posted by RP on IDP
Notifications, or created contents

UPDATE/REMOVE:
Other actions taken on the IDP
The RP can add the user to groups and modify the user’s IDP account
Potential Information Leaks

- **Single-hop data transfer:** RP to IDP (or IDP to RP)
- **Multi-hop leak:** Indirect leak via proxy node(s)
RP-to-RP Leakage Example

Dataset with 44 RPs using Facebook, 14 using Twitter and 12 using Google

RP-to-RP leaks

<table>
<thead>
<tr>
<th>IDP</th>
<th>February 2014</th>
<th>April 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All</td>
<td>Severe</td>
</tr>
<tr>
<td>Facebook</td>
<td>645</td>
<td>150</td>
</tr>
<tr>
<td>Twitter</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>Google</td>
<td>91</td>
<td>0</td>
</tr>
</tbody>
</table>

- Potential RP-to-RP leaks
 - Information written/posted from RP1 to IDP
 - Information read from IDP to RP2
 - Leak only possible with Write(RP1-IDP) + Read(IDP-RP2)
Facebook Use-case

- Facebook API changes in 2015 to strengthen privacy
 - Most RPs needed to change to more privacy-preserving data sharing permissions to comply
 - 63 top-200 RPs using Facebook as their IDP
Contributions and Findings

• Showed that the RP-IDP landscape can be modeled as a bipartite graph
 – Designed a model for RP-IDP structures
 – Identified structural changes over time
• Protocol- and IDP selections made by RPs
 – A few popular IDPs increasingly used
 – More data sharing – less user privacy
• Identified privacy leakage risks
 – Multi-hop, enabled by the structures
Longitudinal Analysis of the Third-party Authentication Landscape

Anna Vapen, Niklas Carlsson, Nahid Shahmehri
anna.vapen@liu.se