Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking

Cesar Ghali, Gene Tsudik, and Ersin Uzun

NDSS Workshop on Security of Emerging Networking Technologies (SENT)
February 23, 2014
NDN Overview

Content Poisoning
- Problem Definition
- Content Ranking
- ndnSIM Experiments

Conclusion
Current Internet is designed
 For point-to-point
 Not content distribution

Research efforts: Develop new Internet architecture

Named-Data Networking (NDN):
 Funded by NSF as part of FIA program
 10 US institutions
 Security and privacy by design
Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking

Cesar Ghali, Gene Tsudik, and Ersin Uzun

SENT 2014
NDN Overview

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
NDN Overview

\[Cr_A \rightarrow R_1 \xrightarrow{\text{Interest}} R_2 \xrightarrow{} R_3 \xrightarrow{} P \]

\[Cr_B \rightarrow R_A \]

'/youtube/videos/presidentspeech'
NDN Overview

Cesar Ghali, Gene Tsudik, and Ersin Uzun
NDN Overview

\[Cr_A \rightarrow R_1 \rightarrow R_2 \rightarrow R_3 \rightarrow P \]

Interest: \(/youtube/videos/presidentspeech \)

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
NDN Overview

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
NDN Overview

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
NDN Overview

Diagram:

- \(Cr_A \) → \(R_1 \) → \(R_2 \) → \(R_3 \) → \(P \)
- \(Cr_B \) → \(R_4 \)
- /youtube/videos/presidentspeech
NDN Overview

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
NDN Overview

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking

13
NDN Overview

Interest

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
Outline

NDN Overview

Content Poisoning
 Problem Definition
 Content Ranking
 ndnSIM Experiments

Conclusion

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
Problem Definition

NDN has built in security features
 ▶ Producer signs content
 ▶ Consumer verifies signature

Verifying signatures in routers is expensive

Fake content can be injected into router caches
 ▶ Consumers verify signature
 ▶ No mechanism to cause removal of fake content from router caches
Counter-measures

- Routers verifying signatures prevents poisoning
 - Expensive
 - Requires fetching, parsing and verifying public keys
 - Know trust context

- Light-weight content ranking approach
 - Observe consumer behavior when receiving fake content
Counter-measures
Content Ranking

- Assign a rank to each in-router cached content
- Ranges in $[0, 1]$ range
- Starts with 1, and decreases with time

- Depends on:
 - Number of exclusions
 - Freshness of exclusion
 - Number of excluding interfaces
Content Ranking

- Assign a rank to each in-router cached content
- Ranges in \([0, 1]\)
- Starts with 1, and decreases with time

- Depends on:
 - Number of exclusions
 - Freshness of exclusion
 - Number of excluding interfaces

\[
\text{rank} = e^{f(\# \text{ of exclusions, } \alpha_0)} \cdot \text{freshness} \cdot \text{interfaces ratio}
\]
We used ndnSIM to simulate content ranking algorithm.

Experimental setup:
- Adversary model:
 - Pre-populate router cache
 - Malicious consumers
- Different rates of pre-populated fake content
- Different rates of malicious consumers
- Benign consumers stop after receiving valid content
ndnSIM Experiments – Topologies

DFN

AT&T

- Consumer
- Edge Router
- Core Router
ndnSIM Experiments

- Different pre-population rate & benign consumers

Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
ndnSIM Experiments - DFN

- 99.9% pre-population rate & benign and malicious consumers
Cesar Ghali, Gene Tsudik, and Ersin Uzun

Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking

35
Outline

NDN Overview

Content Poisoning
 Problem Definition
 Content Ranking
 ndnSIM Experiments

Conclusion
Conclusion

▶ Content poisoning is a threat in current NDN design

▶ Our approach: content ranking is based on observing exclusion patterns

▶ Encouraging results up to 10% malicious consumers

▶ Future: ranking algorithm in active adversary model
Thank you!

Questions?
Adversary Model

- **Fake** content object:
 - invalid signature,
 - valid signature generated with the wrong key,
 - or, malformed Signature or KeyLocator field

- **Valid** content object – verifiable signature generated with correct key

- **Adversary** – NDN entity that can inject fake content

- **Content poisoning** – injects fake content
Content Ranking

A. *Number of Exclusions:*
 - The more exclusions the less the weight
 - Define
 - $n|H(C)$ – content object
 - $R_{n|H(C)} = E_{n|H(C)}/Q_n$ – exclusion rate
 - r_{to} – rank of $n|H(C)$ when expires
 - α_{to} – makes rank equal to r_{to} when content expires
 - Assign higher rank to content excluded less

\[
\alpha = \alpha_{to} - \left(R_{n|H(C)} \times \alpha_{to} \right)
\]
Content Ranking

B. Time Distribution of Exclusions:
 - Give more weight to newer exclusions
 - Define
 - \(i_{n|H(C)} \) – exclusion influence
 \[
 i_{n|H(C)}(t_e) = 1 - e^{-\frac{t_e}{\beta}}
 \]
 - \(t_e \) – time elapsed since last exclusion
 - \(\beta \) – determines influence degradation pattern
 - \(t_{mw} \) – time elapsed before minimally weighting \(n|H(C) \)
 - Can calculate \(\beta \) by setting:
 - \(t_e = t_{mw} \)
 - \(i_{n|H(C)} = 1 \)

Cesar Ghali, Gene Tsudik, and Ersin Uzun
Needle in a Haystack: Mitigating Content Poisoning in Named-Data Networking
Content Ranking

C. Excluding Interfaces Ratio:

- Penalize content excluded on multiple interfaces
- Define

 - \(f_n \) – \# of router interfaces
 - \(f_e \in [0, f_n] \) – \# of interfaces on which exclusion is received for \(n|H(C) \)
 - \(f_s \in [1, f_n] \) – \# of interfaces on which \(n|H(C) \) has been served
 - \(e_{n|H(C)} \in [0, 1] \) – excluding interfaces ratio

\[
e_{n|H(C)} = \begin{cases}
\frac{f_s-f_e}{f_s} & \text{if } f_s \geq f_e \\
1 & \text{otherwise}
\end{cases}
\]
Content Ranking

- Based on previous definitions

\[\text{rank} = e^{\frac{-t}{f(\# \text{ of exclusions, } \alpha_0) \cdot \text{freshness} \cdot \text{interfaces ratio}}} \]

- When content object has never been excluded
 - interfaces ratio = 1,
 - freshness = 1,
 - and, \(\# \) of exclusions = 0

\[\text{rank} = e^{\frac{-t}{f(\alpha_0)}} \]
Content Ranking

- Based on previous definitions

\[r_{n|H(C)}(t) = e^{e_{n|H(C)} \times i_{n|H(C)}(t_e) \times \left[\alpha_{to} - \left(R_{n|H(C)} \times \alpha_{to} \right) \right]} \]

- When \(n|H(C) \) has never been excluded
 - \(e_{n|H(C)} = 1 \),
 - \(i_{n|H(C)}(t_e) = 1 \),
 - and, \(R_{n|H(C)} = 0 \)

\[r_{n|H(C)}(t) = e^{-\frac{t}{\alpha_{to}}} \]
ndnSIM Experiments

1. Tree Topology:
ndnSIM Experiments

1. **Tree Topology:**

 ![Graph showing percentage of benign consumers receiving valid content over time for different scenarios in ndnSIM experiments.](image)