Beyond Access Control: Managing Online Privacy via Exposure

Mainack Mondal† Peter Druschel† Krishna Gummadi† Alan Mislove‡

†MPI-SWS ‡Northeastern University

USEC, February 2014

All the logos used in this talk are collected from web and property of their respective owners
Privacy concerns in Online Social networking sites (OSNs)

“Privacy is the ability for people to determine for themselves when, how, and to what extent, information about them is communicated to others” - A. Westin. Privacy and Freedom, 1970

~1 B users
~4.75 B daily pieces of content

How to ensure privacy of this content?

Privacy concerns with access of OSN content

1. Ensure privacy from OSN operators

2. Our concern: Ensure privacy from other users
Managing privacy with Access Control Lists (ACLs)

Privacy violation from ACL point of view:
If someone accesses content who the user did not allow

Allow others access to content
Privacy violations in the real world

Privacy violation in real world from user’s point of view:
If someone accesses content who the user did not intend

ACLs are inadequate to capture many such privacy violations

USEC 2014
Scenario 1: Facebook newsfeed

Facebook pushes your content as updates

Others automatically get your content when they login to their Facebook page

After Newsfeed: More people actually saw the content

Users complained of privacy violation [Boyd et al. ’08]

Before and after Newsfeed: access control did not change!
Scenario 2: Facebook timeline

Sort your content by upload time

Others can search by time

After timeline: Old content became easily searchable

Users felt privacy was violated

Before and after Timeline: access control did not change!
Scenario 3: Spokeo

Service aggregating public data from web

Others get all of this data by searching Spokeo

After aggregation: Inferring non public data become easier

Users complained of **privacy violation**

Before and **after** aggregation: **access control did not change!**
Summary

User reaction suggests each of the cases violated privacy

However access control was not violated in any of the cases

Take away 1: **Access control is inadequate to capture user intention**
Outline

Access control is inadequate to capture privacy

Exposure: A different concept to capture information privacy

Discussion: How to manage privacy via exposure
Exposure: Definition

Prominence of I at t: Know I at t

Exposure set of I learn I eventually ($t \rightarrow \infty$)

Can access I (ACL)

Universe of users

Exposure for content I

The set of people who will learn I eventually

USEC 2014
How accurately do users estimate exposure?

Facebook researchers did a study with 589 users
[Bernstein et al. 2013]
Perceived exposure grossly underestimates actual exposure

There may be a feeling of privacy violation when actual exposure is different from perceived exposure
Exposure in more detail

Photo uploaded and shared with public

This is when users possibly start feeling their privacy is violated

Actual exposure

User estimate of exposure

Posted in reddit

total views

0

t

t_1

∞
time

USEC 2014
Revisiting scenario 1: Facebook newsfeed

Exposure before newsfeed
Friends who *visit* profile

Exposure after newsfeed
All the *friends who are logged into* Facebook

Exposure of uploaded information *after* newsfeed > Exposure of uploaded information *before* newsfeed

USEC 2014
Revisiting scenario 2: Facebook timeline

Exposure of old content before timeline

Users who will scroll down thousands of content

Exposure of old content after timeline

All users who search by time

Exposure of old information after timeline > Exposure of old information before timeline

USEC 2014
Revisiting scenario 3: Spokeo

Exposure before aggregation
Users who collect content themselves from multiple sources

Exposure after aggregation
Any user who searches in Spokeo

Exposure of inferred information after aggregation > Exposure of inferred information before aggregation

USEC 2014
Take away 2: Exposure based privacy model can capture violations which are not captured by access control
Outline

Access control is inadequate to capture privacy

Exposure: A different concept to capture information privacy

Discussion: How to manage privacy via exposure
Discussion: Managing privacy via exposure

Challenge 1:
How to estimate exposure for a content?

Challenge 2:
How to make users aware of the estimated exposure?

Challenge 3:
How to allow users more control over exposure?
Challenge 1: Estimating exposure

Situations where predicting exposure is very hard
Cross site prediction, exposure of inferred information

Situations where predicting exposure is possible
Predicting exposure of content in a site
Lots of research in content popularity growth

[Borghol et al.] [Figueiredo et al.]
[Hong et al.] [Zaman et al.]
[Bernstein et al.]
Challenge 1: Who can best estimate exposure

OSN operators are in the **best position to predict** exposure accurately with the data they collect

They log who is accessing what content
They collect historical data for content access

OSN operators can also **control** exposure

They decide which content to show other users
Challenge 2: How to make users aware of the exposure?

Prediction can be shown to users at different granularity

✔ List of predicted people for a content
✔ Number of predicted people for a content
✔ Showing the prediction for a certain time period
✔ Showing the prediction with error bounds
✔ Showing how a specific dissemination mechanism changes the prediction
 e.g., 200 more people are likely to see your content due to newsfeed
Challenge 3: How to allow users more control over exposure?

Different “knobs” can be provided to the user

✔ Change access control to a more restrictive setting
✔ Disabling particular dissemination mechanisms, e.g. search
✔ Enabling tripwires
 Take content offline if more than 50 people view
 Take content offline after two months
Take away 3: There are lots of open challenges and substantial research opportunities in how to design and deploy exposure based systems
Conclusion

Take away 1: Access control is inadequate to capture user intention

Take away 2: Exposure based privacy model can capture violations which are not captured by access control

Take away 3: Lots of open challenges to design systems which can manage privacy by controlling exposure

Thank you!
Backup slides
Exposure : Definition

Exposure for content I
The set of people who will learn I eventually

Know I at t

Can infer I

Exposure set of I learn I eventually (t→∞)

May access I (ACL)

Universe of users

USEC 2014
How accurately can you predict future exposure?

Relative error is less than 0.1 in 75% of Scenario 3!

Can predict exposure with high accuracy
Extra slides
Access control is inadequate, scenario 1: Facebook newsfeed

- Facebook introduced News feed in 2006
 - Involved pushing new information to friends’ Facebook page

- Information became almost involuntarily accessible

- Users strongly objected stating violation of privacy

Access control was not changed!
Access control is inadequate, scenario 2: Facebook timeline

- Facebook introduced timeline in 2011 end
 - Chronologically order all the information on your profile
 - Make them easily searchable for other users

- Easier to search Potentially embarrassing older content

- Users were afraid of privacy violation

 Access control was not changed!
Access control is inadequate, scenario 3: Spokeo

- Service aggregating information about individuals
 - Each individual information is public content
 - E.g., your Facebook profile, address

- One can infer new non public information
 - Estimating wealth using address and public property records

- Users complain of privacy violation
 - Access control was not changed!
Modeling user privacy using exposure

- For each content users have an expected exposure
 - How many other users are likely to access the content

- We can model privacy violation for an information as
 - Large deviation of actual exposure from expected exposure
Revisiting scenario 1: Facebook newsfeed

- **Before newsfeed was introduced**
 - Expected exposure: Friends who will visit user’s profile
 - Actual exposure was same as expected exposure

- **After newsfeed was introduced**
 - Actual exposure: All friends to whom the information is pushed
 - Actual exposure is much higher than the expected exposure
Revisiting scenario 2: Facebook timeline

- **Before timeline was introduced**
 - Expected exposure for older data: Friends who will scroll to find a old content
 - Actual exposure for older data was same as expected exposure

- **After timeline was introduced**
 - Actual exposure for older data: All friends who visit the profile
 - Actual exposure is much higher than the expected exposure
Revisiting scenario 3: Spokeo

- **Before spokeo aggregated data**
 - Expected exposure for new inferred data: Users who dig up each individual pieces of content form different sources
 - Actual exposure for older data was same as expected exposure

- **After spokeo aggregated data**
 - Actual exposure for new inferred data: All users who visit public spokeo website
 - Actual exposure is much higher than the expected exposure
Key challenge: Predicting future exposure

- Huge existing work for predicting growth in content popularity
 - Future YouTube views, Facebook likes, Retweets
 - Use machine learning, regression techniques
 - We can leverage advances in those fields to predict exposure

- OSN operators are best positioned to do the predictions
 - Empirical data on how information disseminates in their sites
 - Facebook or Youtube already provide number of likes or views
Change in exposure can capture the privacy violations not covered by access control
Key challenge: Predicting future exposure

- Leverage advances in predicting popularity growth and information propagation.
- Easiest to predict for OSNs by virtue of huge empirical data.
Limitations of our model

- Privacy violation by inference using available data
 - It is extremely hard to enumerate all possible inference

- Privacy violation using cross site prediction
 - Prediction across multiple systems
 - E.g., posting a picture taken from Facebook in tweeter
Universe of principals

Can learn I

Expected to learn I eventually: E_i

Know I at t: $P_i(t)$
Exposure: Definition

Exposure for content I

The set of people who will learn I eventually

\[E_I = \lim_{t \to \infty} P_I(t) \]

Can learn I

Universe of users

\[P_I(t) = \{ U | U \text{ learn I at time } t \} \]
Exposure : Definition

Know I at t

Exposure set of I learn I eventually ($t \to \infty$)

Can infer I

May access I (ACL)

Universe of users

Exposure for content I

The set of people who will learn I eventually

USEC 2014
Proposed model: managing privacy via exposure

Predicting future exposure for content
Proposed model: managing privacy via exposure

Predicting future exposure for content

Making the predictions available to users

Will possibly be seen by around 20 people (click to see who they are)
Proposed model: managing privacy via exposure

Predicting future exposure for content → Making the predictions available to users → Let user fine tune the exposure

✔ Change access control
✔ Make content non-searchable
✔ Enable tripwires

Feedback to the predictor

USEC 2014
Managing privacy via exposure

Step 1
Estimating exposure for content

- Knowing who have already seen the content
- Predicting who is likely to see it

Step 2
Making the predictions available to users

- E.g. Change access control

Step 3
Let user fine tune the exposure

USEC 2014
Step 1: Estimating future exposure

Key challenge: Predicting future exposure

Situations where predicting future exposure is very hard

Cross site prediction, e.g., exposure after re-sharing
exposure of inferred information: inferring wealth

Situations where predicting exposure is possible

Predicting exposure of content in a site
Lots of research in content popularity growth

[Borghol et al] [Figueiredo et al.]
[Hong et al.] [Zaman et al]
[Bernstein et al.]
Managing privacy with Access Control Lists (ACLs)

Privacy violation:
If someone accesses content who the user did not intend

ACLs don’t capture many privacy violation scenarios
Modeling user privacy using exposure

Deviation from desired exposure captures Privacy violation

Change in exposure ⇒ Privacy violation
Exposure: Illustration

I: Birthday of a user in Facebook

Know birthdate at time t

Exposure set of I: All users who eventually learn the birthdate

ACL: Set of people who the user allowed to see the birthdate

Universe of users

USEC 2014
Exposure in more detail

Photo uploaded and shared with public

This is When users possibly start feeling their privacy is violated

A change in the exposure ⇒ chance of privacy violation
How accurately do users estimate exposure?

Facebook researchers did a study with 589 people [Bernstein et al. 2013]

Question:

“How many people do you think saw it?” (i.e., a content)

Answer:

Desired exposure (median): 20
Actual exposure (median): 78

There may be a feeling of privacy violation when actual exposure is different from desired exposure

USEC 2014