Efficient Private Statistics with Succinct Sketches

Luca Melis, George Danezis, Emiliano De Cristofaro

University College London
Motivation

• Gathering statistics in real-world applications:
 1. Recommender systems for online streaming services
 2. Traffic statistics for the Tor Network

• Privacy-preserving aggregation can help but…
 – Protocols do not scale well for large streams

• Intuition: Approximate statistics acceptable in some cases for efficiency trade-off
Roadmap

• Privacy-preserving aggregation protocols with “succinct” data structures (sketches)

• Reduce complexities from linear to logarithmic in the size of the input streams

• Build practical, easy-to-deploy systems
Preliminaries: Count-Min Sketch

- Estimate item’s frequency in a stream by mapping a stream of values (of length T) into a matrix of size $O(\log T)$
- **Key point**: Sum of two sketches yields sketch of the union of the two streams
ItemKNN-based Recommender System

• Predict favorite items for users based on their own ratings and those of “similar” users

• Consider N users, M TV programs and binary ratings (viewed/not viewed)

• Build a co-views matrix C, where C_{ab} is the number of views for the pair of programs (a,b)

• Compute the Similarity Matrix

$$\{Sim\}_{ab} = \frac{C_{ab}}{\sqrt{C_a \cdot C_b}}$$

• Identify K-Neighbours (KNN) based on matrix
A Private Recommender System

• Build a global matrix of co-views to train ItemKNN in a privacy-friendly:
 1. Private data aggregation based on secret sharing [Kursawe et al. 2011]
 2. Count-Min Sketch to reduce overhead

• System Model:
 – Users (in groups)
 – Tally Server (e.g, the BBC)
User $\mathcal{U}_i \ (i \in [1,N])$

\[
x_i \in \mathbb{F}_p, \ y_i := g^{x_i} \mod q
\]

\[
k_{i,\ell} := \sum_{j \neq i} H(y_j^{x_i} || \ell || s) \cdot (-1)^{i > j} \mod 2^{32}
\]

\[
b_{i,\ell} := X_{i,\ell} + k_{i,\ell} \mod 2^{32}
\]

Fault recovery (if needed)

\[
k'_{i,\ell} := \sum_{\substack{j \neq i, \ j \notin \mathcal{U}_{on}}} H(y_j^{x_i} || \ell || s) \cdot (-1)^{i > j} \mod 2^{32}
\]

\[
c'_{\ell} := \left(\sum_{i \in \mathcal{U}_{on}} b_{i,\ell} - \sum_{i \in \mathcal{U}_{on}} k'_{i,\ell} \right) \mod 2^{32}
\]

- **Security**
 - Aggregator Obliviousness (AO)
 - Scheme is secure in the honest-but-curious model under the CDH assumption
Implementation

• **Key points**
 – Transparency, ease of use, ease of deployment

• **Server-side**
 – Tally as a *Node.js* web server

• **Client Side**
 – Runs in the browser
 – Mobile cross-platform application (*Apache Cordova*)
Performance evaluation

User side (1,000 users)
Performance evaluation

Server side (1,000 users)
Statistics on Tor Hidden Services

• Aggregate statistics about the number of hidden service descriptors from multiple HSDirs

• Median statistics to ensure robustness

• **Problem**: Computation of statistics from collected data can potentially de-anonymize individual Tor users or hidden services
Protocol for estimating median statistics

• We rely on:
 – A set of authorities
 – A homomorphic public-key scheme (AH-ECC)
 – Count-Sketch (a variant of CMS)

• Setup phase
 – Each authority generates their public and private key
 – A group public key is computed
Protocol for estimating median statistics (2)

• Each HSDir (router) builds a Count-Sketch, inserts its values, encrypts it and sends it to a set of authorities.

• The authorities:
 – Add the encrypted sketches element-wise to generate one sketch characterizing the overall network traffic.
 – Execute a divide and conquer algorithm on this sketch to estimate the median.
Estimation of median statistics

• The range of the possible values is known
• On each iteration, the range is halved and the sum of all the elements on each half is computed
• Depending on which half the median falls in, the range is updated and again halved
• Process stops once the range is a single element

• **Output privacy:**
 – Volume of reported values within each step is leaked
 – Provide *differential privacy* by adding Laplacian noise to each intermediate value
Protocol evaluation

• Experimental setup:
 – 1200 samples from a mixture distribution
 – Range of values in [0,1000]

• Performance evaluation:
 – Python implementation *(petlib)*
 – 1 ms to encrypt a sketch (of size 165) for each HSDir
 and 1.5 sec to aggregate 1200 sketches
Quality of estimation vs. privacy protection
Future work

• Apply our private recommender system to news app for Android

• Extend to other machine learning algorithms

• Extend our protocols to malicious security
Thanks for your attention!