Korean Shellcode with ROP Based Decoding

Ji-Hyeon Yoon* and Hae Young Lee
Department of Information Security
Seoul Women’s University
Republic of Korea
{jhy,haelee}@swu.ac.kr

Our Previous Work (Korean Shellcode)
- **Background & Motivation**
 - **Sino-Korean**: About 6~70% words in the Korean vocabulary originated from Chinese words.
 - Chinese characters are often used to clarify meaning of Sino-Korean.
 - Korean text may include Korean, alphanumeric characters, and symbols, which make up a large portion (approximately 70%) of the UTF-16 character set.

- **Basic Idea**
 - Each 2-byte code of shellcode is transformed into a Chinese character and then placed within Korean text.
 - Many 2-byte codes will already appear to be Chinese characters.
 - The others can be transformed into Chinese ones by XOR operations.

- **Our Approach: Hiding shellcode by placing pseudo-Chinese words**
 - A simple decoder retransforms these words through XORs hinted by Korean characters.

- **Merits**
 - Shellcode can be easily embedded within Korean text and reconstructed by a simple decoder.
 - Shellcode hidden in text may not be detected by automatic and even manual payload inspection.

- **Demerits in Korean shellcode**
 - Shellcode embedded in Korean text could be detected due to ‘the signature of its decoder.’

- **Return-Oriented Programming (ROP)**
 - A computer security exploit technique that allows an attacker to divert control flow and execute arbitrary code using existing codes – without injecting any code.
 - **Gadget**: several small instruction sequences of existing code used in ROP. Gadgets end with an indirect ret instruction and are chained together through that instruction.
 - **Motivation**
 - The signature of Korean shellcode may be virtually eliminated if we can reconstruct it using ROP.
 - It would be easier to implement than ‘pure’ ROP; we just need to find appropriate instructions for the reconstruction.

Our Present Approach
1. **Hiding Shellcode in Korean Text**
 - Some 2-byte codes already will appear to be Chinese characters and the others can be easily transformed into Chinese characters through XORs.
 - These Chinese characters are grouped into pseudo-Chinese words based on reconstruction operations (XOR masks in the figure).
 - Each pseudo-Chinese word is placed within text.
 - Some ‘real’ Chinese words can be placed to make text difficult to be distinguished from ‘real’ text.

2. **Data for ROP Based Decoding**
 - **Korean shellcode is reconstructed through chaining ‘gadgets.’**
 - **Gadgets** are consist of instructions existing in the target program and end with a ret instruction.
 - **A payload contains**: ① Korean shellcode, ② starting addresses of gadgets, and ③ starting address of reconstructed shellcode.
 - Each Chinese word is retransformed through an XOR with a ‘hint’ in text.
 - Any real Chinese words can be ignored based on hints.

3. **Shellcode Reconstruction**
 - **Injecting Korean shellcode**
 - Through the buffer overflow vulnerability of the target program, the stack is overwritten by a payload that includes Korean shellcode and data for ROP based decoding.
 - **Diverting Control Flow**
 - The first encounter with a ret instruction diverts the control flow of the program to the first gadget.
 - **Reconstructing Shellcode by Gadgen Chaining**
 - The other gadgets are executed by gadget chaining, so that shellcode is reconstructed.
 - **Executing Reconstructed Shellcode**
 - The encounter with a ret instruction within the last gadget diverts the flow to the reconstructed shellcode, so that it is finally executed.

Conclusions & Future Work
- **Korean shellcode with ROP based decoding**
 - Shellcode can be hidden in Korean text and reconstructed by ROP based gadgets.
 - May evade many detection techniques thanks to the elimination of the signature.
 - Easy to be implemented, yet effective against payload inspection and LBR based defensive measures.
 - Can be applied to other East Asian languages such as Chinese and Japanese.

- **The future work includes**
 - Automation of our approach
 - Detection of Korean shellcode
 - Applications to other languages

Background & Motivation
- **Demerits in Korean shellcode**
 - Shellcode embedded in Korean text could be detected due to ‘the signature of its decoder.’

- **Return-Oriented Programming (ROP)**
 - A computer security exploit technique that allows an attacker to divert control flow and execute arbitrary code using existing codes – without injecting any code.
 - **Gadget**: several small instruction sequences of existing code used in ROP. Gadgets end with an indirect ret instruction and are chained together through that instruction.
 - **Motivation**
 - The signature of Korean shellcode may be virtually eliminated if we can reconstruct it using ROP.
 - It would be easier to implement than ‘pure’ ROP; we just need to find appropriate instructions for the reconstruction.

Our Present Approach
1. **A payload contains**: ① Korean shellcode, ② starting addresses of gadgets, and ③ starting address of reconstructed shellcode.
2. **The control flow is diverted to the reconstructed shellcode.**