Credential Management and Secure Single Login for SPKM

- Client-Server
- Generic Security Service
- Simple Public Key Mechanism
- Credential Management
- Secure Single Login
Credential Management and Secure Single Login for SPKM

The Players

Client

Mr. BadGuy

Server
Credential Management and Secure Single Login for SPKM

GSS_Init_sec_context
(..., Cred_C, S, ...)

GSS_Accept_sec_context
(..., T, Cred_S)

GSS_Init_sec_context
(..., T, ...)

Client

Server
Credential Management and Secure Single Login for SPKM

![Diagram of Kerberos Authentication System]

- **Client**
- **Server**
- **Authentication Server**
- **Ticket Granting Service**

Key Diagram Components:
- TGS-req
- S-req
- Service-req
- S
- TGS

© Detlef Hühnlein, huehnlein@secunet.de
SPKM (3-Way-Auth)

1. Rc, \(M = Rc|S|C \), \(F = \text{Sig}(h(M), Sc) \)

2. \(M, F, \) Pc

3. Verify

4. Rs, Kcs, \(N = Rs|Rc|Kcs \)
 \(G = \text{Enc}(N, Ps), \) \(H = \text{Sig}(h(N), Ss) \)

5. \(G, H, \) Ps

6. Verify, decrypt \(G, I = \text{Enc}(Rs, Ps) \)

7. I

8. \(Rs' = \text{Enc}(I, Ss) = Rs? \)

© Detlef Hühnlein, huehnlein@secunet.de
Credential Management for SPKM

"The key management employed in SPKM is intended to be as compatible as possible with both X.509 and PEM, since these represent large communities of interest and show relative maturity in standards."
Credential Management and Secure Single Login for SPKM

Credential Management

PSE

secunet

Michaela May

or

SW-PSE

X.500

© Detlef Hühnlein, huehnlein@secunet.de
Credential Management and Secure Single Login for SPKM

Multiple Connections

- Keep PSE accessible (for a long time)
- Enter PIN to open PSE for every connection
- Secure Single Login

Credential Management

<table>
<thead>
<tr>
<th></th>
<th>Usability</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keep PSE accessible (for a long time)</td>
<td>😊</td>
<td>😞</td>
</tr>
<tr>
<td>Enter PIN to open PSE for every connection</td>
<td>😞</td>
<td>😊</td>
</tr>
<tr>
<td>Secure Single Login</td>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>

© Detlef Hühnlein, huehnlein@secunet.de
Secure Single Login

<table>
<thead>
<tr>
<th>Kerberos</th>
<th>SPKM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get TGS-Ticket with limited lifetime to authenticate</td>
<td>Generate and (self) certify Public Key Pair with limited lifetime to authenticate</td>
</tr>
</tbody>
</table>
X.509 v3 - Certificates

- version
- serialNumber
- signature
- issuer
- validity
- subject
- subjectPublicKeyInfo
- ... extensions
- not before
- not after
- signature
- algorithm
X.509 v3 / PKIX - Extensions

- **SubjectAltName**
- **IssuerAltName**
- **Basic Constraints**
 - Boolean: `cA`
 - Integer: `PathLenConstraint`
- **Key Usage**
 - BitString:
 - (0) `digitalSignature`
 - (1) `nonRepudiation`
 - (2) `keyEncipherment`
 - (3) `dataEncipherment`
 - (4) `keyAgreement`
 - (5) `keyCertSign`
 - (6) `cRLSign`
 - (7) `encipherOnly`
 - (8) `decipherOnly`
- **Name Constraints**
 - `GenSubtree` permittedSubtrees
 - `GenSubtree` excludedSubtrees
- **ExtendedKeyUsage**
 - OID
 - KeyPurposeId

Examples:
- `id-kp-serverAuth`
- `id-kp-clientAuth`
- `id-kp-codeSigning`
- `id-kp-emailProtection`
Credential Management and Secure Single Login for SPKM

new Key Purposes:
- id-kp-SignTempCert
- id-kp-Temporary

permanent

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer</td>
<td>CA</td>
</tr>
<tr>
<td>validity</td>
<td>u-notBefore</td>
</tr>
<tr>
<td>subject</td>
<td>User</td>
</tr>
<tr>
<td>subjectAltName</td>
<td>User-alt</td>
</tr>
<tr>
<td>issuerAltName</td>
<td>CA-alt</td>
</tr>
<tr>
<td>Keyusage</td>
<td>critical=TRUE, digitalSignature, nonRepudiation</td>
</tr>
<tr>
<td>ExtKeyUsage</td>
<td>critical=FALSE (id-kp-SignTempCert)</td>
</tr>
<tr>
<td>Basic Constraints</td>
<td>critical=TRUE, cA=FALSE</td>
</tr>
</tbody>
</table>

temporary

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issuer</td>
<td>User</td>
</tr>
<tr>
<td>validity</td>
<td>t-notBefore</td>
</tr>
<tr>
<td>subject</td>
<td>User</td>
</tr>
<tr>
<td>subjectAltName</td>
<td>User-alt</td>
</tr>
<tr>
<td>issuerAltName</td>
<td>User-alt</td>
</tr>
<tr>
<td>Keyusage</td>
<td>critical=TRUE, digitalSignature</td>
</tr>
<tr>
<td>ExtKeyUsage</td>
<td>critical=TRUE, id-kp-Temporary</td>
</tr>
<tr>
<td>Basic Constraints</td>
<td>critical=TRUE, cA=FALSE</td>
</tr>
</tbody>
</table>
Credential Management and Secure Single Login for SPKM

Verification Procedure

1. PKIX conform
 - Issuer = subject
 - issuerAlt = subjectAlt
 - validity.T-notBefore > validity.U-notBefore
 - validity.T-notAfter < validity.U-notAfter
 - KeyUsage critical = TRUE
digitalSignature = TRUE
 - ExtKeyUsage (id-kp-SignTempCert)

 not present

2. PKIX conform

 KeyUsage critical = TRUE
digitalSignature = TRUE
 ExtKeyUsage (id-kp-SignTempCert)

 Issuer = subject
 issuerAlt = subjectAlt
 validity.T-notBefore > validity.U-notBefore
 validity.T-notAfter < validity.U-notAfter
 KeyUsage critical = TRUE
 nonRepudiation = FALSE
 keyCertSign = FALSE
 cRLSign = FALSE
 ExtKeyUsage critical = TRUE
 id-kp-Temporary is present
 Basic Constraints critical = TRUE
cA = FALSE
Efficiency (Estimate)

<table>
<thead>
<tr>
<th>Security</th>
<th>Usab.</th>
<th>Time Efficiency (1024 Bit Mult.)</th>
<th>Space Efficiency (Byte)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Once</td>
<td>Session</td>
</tr>
<tr>
<td>Single Login</td>
<td>😞😊</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Multiple Login</td>
<td>😊😞</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>SSLLogin - RSA</td>
<td>😊😊</td>
<td>/</td>
<td>108315</td>
</tr>
<tr>
<td>SSLLogin - DL (naive)</td>
<td>😊😊</td>
<td>116000</td>
<td>1267</td>
</tr>
<tr>
<td>SSLLogin - DL (prec.)</td>
<td>😊😊</td>
<td>116517</td>
<td>675</td>
</tr>
</tbody>
</table>
http://www.ietf.org/internet-drafts/draft-huehnlein-credman-spkm-00.txt

By Hans Schupp, GMD, Darmstadt, Germany

& me