Limits of Learning-based Signature Generation with Adversaries

Shobha Venkataraman, Carnegie Mellon University
Avrim Blum, Carnegie Mellon University
Dawn Song, University of California, Berkeley
Signatures

- Signature: function that acts as a classifier
 - Input: byte string
 - Output: Is byte string malicious or benign?

- e.g., signature for Lion worm:
 \texttt{“\textbackslash xFF\textbackslashxBF” \&\& “\textbackslash x00\textbackslash x00\textbackslash FA”}\n \texttt{“aaaa” \&\& “bbbb”}
 - If both present in byte string, MALICIOUS
 - If either one not present, BENIGN

- This talk: focus on signatures that are sets of byte patterns
 - i.e., signature is conjunction of byte patterns
 - Our results for conjunctions imply results for more complex functions, e.g. regexp of byte patterns
Automatic Signature Generation

- Generating signatures automatically is important:
 - Signatures need to be generated quickly
 - Manual analysis slow and error-prone
- Pattern-extraction techniques for generating signatures

Training Pool

<table>
<thead>
<tr>
<th>Malicious Strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Strings</td>
</tr>
</tbody>
</table>

Signature Generator

Signature for usage

e.g., ‘aaaa’ & ‘bbbb’
History of Pattern-Extraction Techniques

Signature Generation Systems

Evasion Techniques

Earlybird, Autograph, Honeycomb
[SEVS] [KK] [KC]

Polygraph [NKS]
Hamsa [LSCCK]
Anagram [WPS]
...

Polymorphic worms

Malicious Noise Injection [PDLFS]
Paragraph [NKS]
Allergy attacks [CM]
...

Our Work: Lower bounds on how quickly ALL such algorithms converge to signature in presence of adversaries
Learning-based Signature Generation

Signature generator’s goal: Learn as quickly as possible

Adversary’s goal: Force as many errors as possible
Our Contributions

Formalize a framework for analyzing performance of pattern-extraction algorithms under adversarial evasion

- Show fundamental limits on accuracy of pattern-extraction algorithms with adversarial evasion
 - Generalize earlier work (e.g., [FDLFS], [NKS], [CM]) focused on individual systems
- Analyze when fundamental limits are weakened
 - Kind of exploits for which pattern-extraction algorithms may work
- Applies to other learning-based algorithms using similar adversarial information (e.g., COVERS [LS])
Outline

- Introduction
- **Formalizing Adversarial Evasion**
- Learning Framework
- Results
- Conclusions
Strategy for Adversarial Evasion

- Increase resemblance between tokens in true signature and spurious tokens
 - e.g. can add infrequent tokens (i.e., red herrings [NKS]), change token distributions (i.e., pool poisoning [NKS]), mislabel samples (i.e, noise-injection [PDLFS])
 - Could generate high false positives or high false negatives
Definition: Reflecting Set

Reflecting Sets: Sets of Resembling Tokens

- **Critical token**: token in true signature S. e.g., ‘aaaa’, ‘bbbb’
- **Reflecting set** of a critical token i for a signature generator:
 All tokens as likely to be in S as critical token i, for current signature-generator e.g., Reflecting set for ‘aaaa’: ‘aaaa’, ‘cccc’
Reflecting Sets and Algorithms

Specific to the family of algorithms under consideration

Signature Generator 1

- ‘aaaa’
- ‘cccc’
- ‘eeee’
- ‘gggg’

e.g., coarse-grained
All tokens infrequent in normal traffic, say, first-order statistics

Signature Generator 2

- ‘bbbb’
- ‘ddddd’
- ‘fffe’
- ‘hhhh’

- ‘aaaa’
- ‘cccc’

By definition of reflecting set, to signature-generation algorithm, true signature appears to be drawn at random from $R_1 \times R_2$

- ‘bbbb’
- ‘ddddd’

- ‘aaaa’
- ‘cccc’

R_1

R_2

R_1

R_2
Problem: Learning a signature when a malicious adversary constructs reflecting sets for each critical token

Lower bounds depend on size of reflecting set:
- power of adversary,
- nature of exploit,
- algorithms used for signature generation
Outline

- Introduction
- Formalizing Adversarial Evasion
- Learning Framework
- Results
- Conclusions
Framework: Online Learning Model

Signature generator’s goal:
Learn as quickly as possible
Optimal to update with new information in test pool

Adversary’s goal:
Force as many errors as possible
Optimal to present only one new sample before each update

Equivalent to the mistake-bound model of online learning [LW]
Learning Framework: Problem

Mistake-bound model of learning

Notation:
- n: number of critical tokens
- r: size of reflecting set for each critical token

Assumption: true signature is a **conjunction** of tokens
- Set of all potential signatures: r^n

Goal: find true signature from r^n potential signatures
- minimize mistakes in prediction while learning true signature
Learning Framework: Assumptions

- **Signature Generation Algorithms Used**
 - Algorithm can learn *any* function for signature
 Not necessary to learn only conjunctions

- **Adversary Knowledge**
 - Algorithms/systems/features used to generate signature
 - Does not necessarily know how system/algorithm is tuned

- **No Mislabeled Samples**
 - No mislabeling, either due to noise or malicious injection
 e.g., use host-monitoring techniques[NS] to achieve this
Outline

- Introduction
- Formalizing Adversarial Evasion
- Learning Framework

Results:
- General Adversarial Model
- Can General Bounds be Improved?

- Conclusions
Deterministic Algorithms

Theorem: For any deterministic algorithm, there exists a sequence of samples such that the algorithm is forced to make at least $n \log r$ mistakes.

Additionally, there exists an algorithm (Winnow) that can achieve a mistake-bound of $n(\log r + \log n)$

Practical Implication:
For arbitrary exploits, any pattern-extraction algorithm can be forced into making a number of mistakes:
- even if extremely sophisticated pattern-extraction algorithms are used
- even if all labels are accurate, e.g., if TaintCheck [NS] is used
Randomized Algorithms

Theorem: For any randomized algorithm, there exists a sequence of samples such that the algorithm is forced to make at least $\frac{1}{2}n \log r$ mistakes in expectation.

Practical Implication: For arbitrary exploits, any pattern-extraction algorithm can be forced into making a number of mistakes:

- even if extremely sophisticated pattern-extraction algorithms are used
- even if all labels are accurate (e.g., if TaintCheck [NS] is used)
- even if the algorithm is randomized
One-Sided Error: False Positives

Theorem: Let $t < n$. Any algorithm forced to have fewer than t false positives can be forced to make at least $(n - t) (r - 1)$ mistakes on malicious samples.

Practical Implication:

Algorithms that are allowed to have few false positives make significantly many more mistakes than the general algorithms.

- e.g., at $t = 0$, bounded false positives: $n(r - 1)$
- general case: $n \log r$
One-Sided Error: False Negatives

Theorem: Let $t < n$. Any algorithm forced to have fewer than t false negatives can be forced to make at least $\frac{r^n}{(t+1)} - 1$ mistakes on non-malicious samples.

Practical Implication:
Algorithms allowed to have bounded false negatives have far worse bounds than general algorithms

- e.g., at $t = 0$, bounded false negatives: $r^n - 1$
- general algorithms: $n \log r$
Different Bounds for False Positives & Negatives!

- Bounded false positives: $\Omega((r(n-t))$
 - learning from positive data only
 - No mistakes allowed on negatives
 - Adversary forces mistakes with positives

- Bounded false negatives: $\Omega(r^{n/t+1})$
 - learning from negative data only
 - No mistakes allowed on positives
 - Adversary forces mistakes with negatives

- Much more “information” about signature in a malicious sample

e.g. Learning: What is a flower?

Positive data only

Negative data only
Outline

- Introduction
- Formalizing Adversarial Evasion
- Learning Framework
- Results:
 - General Adversarial Model
 - Can General Bounds be Improved?
- Conclusions
Can General Bounds be Improved?

- Consider Relaxed Problem:
 - Requirement: Classify correctly only
 - Malicious packets
 - Non-malicious packets regularly present in normal traffic
 - Classification does NOT have to match true signature on rest

- Characterize “gap” between malicious & normal traffic
 - Overlap-ratio d: Of tokens in true signature, fraction that appear together in normal traffic.
 - e.g., signature has 10 tokens, but only 5 appear together in normal traffic: $d = 0.5$
 - Bounds are a function of overlap-ratio
Lower bounds with Gaps in Traffic

Theorem: Let $d < 1$. For a class of functions called linear separators, any deterministic algorithms can be forced to make $\log_{1/d} r$ mistakes, and any randomized algorithm can be forced to make in expectation, $\frac{1}{4} \log_{1/d} r$ mistakes.

As d approaches 0, $\log_{1/d} r$ approaches $n \log r$!

Practical Implication:

Pattern-extraction algorithms may work for exploits if:

- signatures overlap very little with normal traffic
- algorithm is given few (or no) mislabeled samples
Related Work

- **Learning-based signature-generation algorithms:**
 Honeycomb[KC03], Earlybird [SEVS04], Autograph[KK04], Polygraph[NKS05], COVERS[LS06], Hamsa[LSCCK06], Anagram[WPS06]

- **Evasions:**
 [PDLFS06], [NKS06],[CM07],[GBV07]

- **Adversarial Learning:**
 - Closely Related: [Angluin88],[Littlestone88]
 - Others: [A97][ML93],[LM05],[BEK97], [DDMSV04]
Conclusions

Formalize a framework for analyzing performance of pattern-extraction algorithms under adversarial evasion

- Show fundamental limits on accuracy of pattern-extraction algorithms with adversarial evasion
 - Generalize earlier work focusing on individual systems
- Analyze when fundamental limits are weakened
 - Kind of exploits for which pattern-extraction algorithms may work
Thank you!
Comparison with Existing Techniques
Form of True Signature: Conjunction

- **Simplifying assumption:** true signature is a conjunction
 - E.g.

- **Motivation:**
 - Earlier experimental work shows conjunctions to be useful signatures on traffic traces
 - Lower bounds for conjunctions => lower bounds for more complex functions (e.g., regexp)
Why do our bounds eventually converge to the right answer?

- **Strong model for learning**
 - Every mistake gains information: draw hypercube
 - Adversary not allowed to change
 - Algorithm is allowed to change
 - \Rightarrow Finite number of mistakes before convergence

- **Change any of these, never converge**
 - Maybe use algorithms designed for adversarial environments (with this kind of adversarial bounds)
Lower Bounds with Gaps in Traffic

- Measuring the Gap in Traffic:

 Overlap-ratio d: Of tokens in the true signature, fraction that appear together in normal traffic.

 e.g., true signature has 10 tokens, but only 5 appear together in normal traffic: $d = 0.5$

- Lower bounds are representation-dependent, when $d < 1$.

 - Algorithms learning linear separators: $\log_{1/d} k$

 (Linear weighted function of attributes)

- Pattern-extraction algorithms may work for exploits whose signatures overlap very little with normal traffic, with host-monitoring techniques

 - Representation-dependent lower bounds that are much weaker
Lower Bounds with Gaps in Traffic

- Lower bounds are representation-dependent, when $d < 1$.
 - Algorithms learning linear separators: $\log_{1/d} k$
 (Linear weighted function of attributes)

- Pattern-extraction algorithms may work for exploits whose signatures overlap very little with normal traffic, with host-monitoring techniques
 - Representation-dependent lower bounds that are much weaker
Practical Implications

- For arbitrary exploits, any pattern-extraction algorithm can be forced into making a large number of mistakes, with common assumptions:
 - even if the algorithm is randomized
 - even if host-monitoring techniques are used, to avoid noise in labels
 - even if arbitrarily complex representations of signatures are allowed

- Existing research demonstrates feasibility of attacks on real systems; our results generalize to all systems that use similar properties of traffic.

- Algorithms that tolerate only one-sided error are significantly easier to manipulate by the adversary.

- Pattern-extraction algorithms may work for exploits whose signatures overlap very little with normal traffic, with host-monitoring techniques
 - Weaker lower bounds
 - Bounds depend on complexity of signature used by learning algorithm
Formal Definition of Reflecting Set?
When might signature-generation work?

- When the attacker cannot find reflecting set
 - “gaps” in traffic mean that
Summary

- Table
- Discussion: Notice they eventually converge
Finding Reflecting Sets

- Exist for current generations of pattern-extraction systems
 - Learning from adversarially-generated features that can be manipulated
 - All attributes in reflecting set [do not need to have identical statistics]
 Sufficient to bias away from true signature.

- Likely to exist for algorithms using traffic statistics of normal and malicious traffic
 - Heavy-tailed nature of traffic patterns (e.g., polymorphic blending attacks illustrate similar behaviour)
Learning Framework: Problem (II)

- Assumption: True signature is a Conjunction of tokens
 - Lower bounds for conjunctions imply lower bounds for more complex functions
 - Common systems have signatures as conjunctions
 - Set of all potential signatures: n^k

- Goal: learn true signature from n^k possible signatures
 - Identify n tokens that constitute true signature
 - **Lower bounds** on the mistakes that can be forced by an adversary
Can General Bounds be Improved?

- Do not always need to classify all packets correctly
 - Only need to classify correctly:
 - Malicious packets
 - Non-malicious packets regularly present in normal traffic
 - Classification does not have to match target signature on others

Exploit Gaps in traffic

- Measure how close malicious traffic is to normal traffic
 - Measure should not be subject to adversarial manipulation
- Bounds are a function of this measure
Generating Signatures Automatically

- Generating signatures automatically is important:
 - Signatures need to be generated quickly
 - Manual analysis slow and error-prone
- Pattern-extraction techniques for signature-generation

![Diagram showing process of signature generation]