One-time Signature Protocols for Signing Routing Messages

Kan Zhang
Computer Laboratory
Cambridge University
kz200@cl.cam.ac.uk
Attacks on Routing Protocols

- Replay of old routing messages
- Inserting bogus routing messages
Securing Routing Protocols

Current protection (RIP, OSPF, ISIS, IDRP):

- Clear-text passwords

Perlman and others proposed stronger protection mechanisms in which public-key digital signatures are used to provide:

- Authenticity
- Integrity

of routing messages.
FLS by Hauser, Przygienda and Tsudik

Hash table computed by a router for link L_1 to L_n:

\[
\begin{array}{cccc}
L_1 & \cdots & L_n \\
\text{up} & \text{down} & \cdots & \text{up} & \text{down} \\
1 & h_1^1(x_1) & f_1^1(x_1) & \cdots & h_1^1(x_n) & f_1^1(x_n) \\
2 & h_2^2(x_1) & f_2^2(x_1) & \cdots & h_2^2(x_n) & f_2^2(x_n) \\
\vdots & \vdots & \ddots & \vdots \\
k & h_k^k(x_1) & f_k^k(x_1) & \cdots & h_k^k(x_n) & f_k^k(x_n)
\end{array}
\]

where h and f are two hash functions and x_i are random values.
Limitations

- Very frequent state changes
- Clock drifts
- Multiple-valued link costs
- Large or changing number of links
- Applicability to other routing messages
One-time Signature Schemes

• Lamport’s original scheme
 To sign a single bit m, choose x_0 and x_1 and publish $h(x_0)$ and $h(x_1)$

 $s_m = \begin{cases}
 x_0 & \text{if } m = 0 \\
 x_1 & \text{if } m = 1
 \end{cases}$

• Improvement by Merkle

 message 00101100
 sign 00101100 101

• Improvement by Winternitz

• Authentication tree by Merkle, Vaudenay, Bleichenbacher and Maurer
Chained One-time Signature Protocol (COSP)

- Choose at random as secret key components
 \[x_j, \quad j = 1, \ldots, n. \]

- Prepare a table of \(n \) hash chains of length \(k \):

 \[
 \begin{array}{cccc}
 0 & h^0(x_1), & h^0(x_2), & \cdots, & h^0(x_n) \\
 1 & h^1(x_1), & h^1(x_2), & \cdots, & h^1(x_n) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 k & h^k(x_1), & h^k(x_2), & \cdots, & h^k(x_n) \\
 \end{array}
 \]

- Sign and broadcast the \(k \)-th row of the table.
COSP Signing

1. Obtain a n-bit binary string g by concatenating $f(M_i)$ with a count field using Merkle’s method as explained above.

2. Form the one-time signature by concatenating the hash values $h^{k-i}(x_j)$ in the $(k - i)$th row of the table for all j such that $g_j = 1$, where g_j is the jth bit of string g.
COSP Verification

1. Obtain the n-bit binary string g by concatenating $f(M_i)$ with a count field using Merkle’s method as explained above.

2. For all j such that $g_j = 1$, check if

$$h^{i-i'}(r_j) = v_j,$$

where r_j and v_j are the received and stored value for the jth bit, respectively, and v_j is last updated for message i'.

3. If true, accept the message and update v_j with value r_j so that when he evaluates Eq. (1) for message $i'' > i$ in the future he only needs to perform $i'' - i$ hash computations.
Delay-and-Forge Attack

message M_i 00101100 101
message M_{i+1} 01101100 100
fake message M'_i 01101000 101

\[x^i_2 = h(x^{i+1}_2) \]

- Signature are sent at pre-set time interval T
- Clocks have to be synchronized within time window T
- Signatures are valid within time window T
Independent One-time Signature Protocol (IOSP)

- To sign message M_i, choose at random as secret key components for next message x'_j, $j = 1, ..., n$ and compute one-time public key P' for next message as $P' = h(h(x'_1)|| \cdots || h(x'_n))$

- Obtain a n-bit binary string g by concatenating $f(M_i|| P')$ with a count field using Merkle’s method as explained above.

- Compute one-time signature S by concatenating signature components s_j, $j = 1, \cdots, n$, given by

$$ s_j = \begin{cases} h(x_j) & \text{if } g_j = 0 \\ x_j & \text{if } g_j = 1 \end{cases} $$

where g_j is the jth bit of string g.
IOSP Verification

- Obtain the n-bit binary string g by concatenating $f(M_i || P')$ with a count field using Merkle’s method as explained above.

- Compute $V = h(v_1 || v_2 || \cdots || v_n)$, where $v_j, j = 1, \cdots, n$ is given by

$$v_j = \begin{cases} r_j & \text{if } g_j = 0 \\ h(r_j) & \text{if } g_j = 1 \end{cases}$$

where r_j is the received jth signature component and g_j is the jth bit of string g.

- If $V = P$, accept the message and update P with value P'.

University of Cambridge
Computer Laboratory
Performance

- COSP verification needs \(l + \lfloor \log_2 l \rfloor + 2 \) hash computations while IOSP needs about half of that.
- Signature verification using IOSP runs more than 10 times faster than RSA (MD5 vs. 1024/8 RSA on 200MHz/64MB Pentium PC using CryptoLib 1.1)
- Both COSP and IOSP signature generation takes negligible time, whereas RSA signature generation is about 100 times slower than verification
Comparison of COSP and IOSP

• Advantages of IOSP
 – Signature verification runs twice as fast as COSP
 – Less memory for storing keys
 – No timing constraint

• Advantages of COSP
 – The signature size of COSP is roughly half of that of IOSP (2KB for IOSP and 1KB for COSP using MD5)
 – Easy to catch up
Applicability as efficient alternatives to public-key signatures

- Fast signature generation and verification
- Non-interactive

As a general approach, the way our protocols being used with public-key systems for message signing is similar to that of secret-key cryptography being used with public-key systems for data encryption.