PRIVACY-PRESERVING LOGARITHMIC-TIME SEARCH ON ENCRYPTED DATA IN CLOUD

Yanbin Lu
University of California, Irvine
(NDSS’11, Feb 6)
CLOUD DATABASE ENVIRONMENT

Database transfer

Query
Response

User

Database Owner

Cloud Server

Server

Server

Server
PRIVACY REQUIREMENTS

Privacy requirements:
- Cloud server learns no information about database
- Cloud server learns no information about user query
- Owner can exercise access control over user query

Personal data vault example:
- Owner: Patient
- Database: Heart beat rate
- Cloud server: Amazon RDS
- User: Cardiologist
PRIVACY-PRESERVING SOLUTION

Encrypted Database

Database Owner

Query

Search token decryption key

Data User

Search token

Matching encrypted records

Decrypt
REQUIREMENTS

- Sublinear search
 - Linear search is untolerable in massive data

- Query result integrity
 - Prevent cloud server from cheating user

- Provable database update
 - Prevent cloud server from cheating database owner
RELATED WORK

- **Order preserving encryption**
 - Deterministic and not IND-CPA secure
 - Domain distribution is fixed

- **Bellare et al. [crypto’07]**
 - Deterministic and not IND-CPA secure
 - Only equality search is supported

- **Predicate encryption**
 - Useful in privacy-preserving cloud database
 - Linear complexity
Predicate Encryption

- **Setup**(\(1^k\)): output secret key \(SK\).

- **Encrypt**(\(SK, I, m\)): encrypt message \(m\) under attributes \(I\) with key \(SK\).

- **Key-extraction**(\(g\)): outputs key \(k_g\)

- **Decrypt**(\(k_g, C_I\)): decrypts iff \(g(I) = 1\)
Building Blocks

- Range predicate encryption (RPE)
 - Ciphertext associated with point t
 - Decryption key associated with a range Q
 - Decryption works if $t \in Q$

- Inner-product predicate encryption (IPE)
 - Ciphertext associated with vector \vec{x}
 - Decryption key associated with vector \vec{v}
 - Decryption works if $\langle \vec{v}, \vec{x} \rangle = 0$
Strawman RPE Building from IPE

- **Encrypt**(t): create $\vec{x} = (x_1, \ldots, x_i, \ldots, x_T)$ where $x_i = 1$ if $i = t$ and $x_i = 0$ otherwise. Run IPE encryption.

- **Extract**(Q): create $\vec{y} = (y_1, \ldots, y_i, \ldots, y_T)$ where $y_i = 0$ if $i \in Q$ and $y_1 = 1$ otherwise. Run IPE key extraction.

- **Decrypt**(e_t, k_Q): Run IPE decryption.
EFFICIENT RANGE REPRESENTATION

Any range can be covered by $2 \cdot (\log T - 1)$ nodes.
Point path intersects with range representation.
EFFICIENT RANGE PREDICATE ENCRYPTION

- **Encrypting point** t:
 - $P(X) = \prod_{v \in CP(t)} (X - v) = \sum_{i=0}^{\log T} \alpha_i X^i$
 - $\vec{A} = (\alpha_0, \ldots, \alpha_{\log T})$

- **Key extraction for range** Q:
 - $\vec{K}_x = (x^0, \ldots, x^{\log T}), \forall x \in MCS(Q)$

- **Observation**:
 - $\vec{A} \cdot \vec{K}_x = \alpha_0 \cdot x^0 + \alpha_1 \cdot x^1 + \cdots + \alpha_{\log T} \cdot x^{\log T} = P(x)$
Logarithmic-time search

- Encrypting each node of B-tree
 - One RPE for search token
 - One RPE for real message

- Search token extraction involves two rounds
 - One for left range
 - One for right range

 Example:
 - Domain size [0-100]
 - Query range [10-20]
 - Left range [0-9], right range [21-100]
QUERY AUTHENTICATION

- Authenticated data structure
 - Encrypted B-tree
 - Authenticated root

- Query result verification
 - Left and right boundary to query range
 - Verification without leaking records out of range

- Provable data update
 - Owner first verifies change path
 - Reconstructs and authenticates root
Performance

Total search time

Search time per record
Thank you!