PNNI Global Routing
Infrastructure Protection (PGRIP)

Livio Ricciulli, Pierangela Samarati,
Sabrina Di Vimercati, Patrick Lincoln
Intrusion Detection

Transport Protocols

Routing

Attacker

Education Detection

Transport Protocols
PGRIP’s Anomaly Detection

Routing Database

Anomaly Detection

Routing

Transport Protocols

Attacker

Routing

Transport Protocols
Advantages

- Higher level abstraction
- More portable
- Reactive rather than preventive
- Cryptographic layer optional
- Handle spontaneous and Byzantine faults in a unified manner
PGRIP’s System-level Design

- Groups \((m+1)\)-connected
- \(3m+1\) PGC Routers
- PGC \(3m\)-connected

PGL=Peer Group Leader
PGC=Peer Group Core

m=1

To Higher layer
PGRIP’s Node Level Architecture

• Allow to express anomalies without knowledge of protocols
• Filter and delegate alarms
• Interactive Consistency protocol to increase resilience
• Fix problems in a reactive manner

Anomaly Detection → Alarm Propagation → Distributed Diagnosis → Remediation Protocols

(to higher levels)
Anomalous Detection

Protocols

History

Operation

Database Graph

Logical Expression

Z != Y

T/F

Statistical Operator

Graph after change is applied

(node.addr.X.hl.Y)

(node.addr.X.hl.Z)
Rules

• Operation
 – Add(path_exp), Update(path_exp), Delete(path_exp)

• State
 – path_exp + statistical info

• Condition
 – Logical expression

• Alarm
 – Unique anomaly identifier
Path Expressions and Conditions

• Operation
 – Update(node.X.ni)
 – node.X.ni.priority.P
 – node.X.ni.leader.L

• State
 – node.X.ni.priority.O
 – node.X.ni.leader.L

• condition
 – P≠O

If X does not change leadership status, changing its priority is anomalous
Path Expressions and Conditions

- **Operation**
 - Update(node.X.hl.Z)
 - node.X.hl.Z.id.R
 - node.X.hl.Z.port.P

- **State**
 - node.R.hl.P.id.Y

- **condition**
 - Y≠X

R knows that: My port P is connected to Y

X says: I am connected to port P of node R
Alarm Propagation

1. Always filter and log alarm
2. Pass alarm to diagnosing module
3. If we do not know how to diagnose, pass alarm up in the routing hierarchy
Diagnosing Module

- Each PGC router receives same alarms
- Each PGC performs diagnosis independently
- After the diagnosis, the PGC routers use an interactive consistency protocol to agree on result (conclusion is guaranteed).
- If no useful diagnosis is reached, give alarm back to alarm propagation module
- If we found the fault pass fault to resolver
Resolver Module

- Use some mechanism to fix fault
 - If there is a bad router, preempt it
 - PGC routers sign and propagate preemption packets
 - If at least 3m core routers preempt X, delete X from the database and discard all packets coming from X
 - If there is a suspicion that X lied, ask X’s neighbors to synchronize their database
 - Turn on cryptographic mechanism to verify integrity of information
 - If do not have cryptography, make sure route does not go through X
Conclusion and Future Work

• Design is very scalable and robust
• Fault tolerance principles are useful and should be exploited more
• Expand this work to non-ATM routing and pursue inter-operation
• Implement anomaly detection module and formulate and deploy some useful rules
• Research on Byzantine fault diagnosis
• Design robust reconfiguration protocols to repair routing faults