When Firmware Modifications ATTACK!
EMBEDDED
Embedded

Defense
EMBEDDED

DEFENSE

EXPLOITATION
In ye 'olden days...
Big Bad Internet
Big Bad Internet

Hax0r

Firewall

Server
Big Bad Internet

Hacker

Firewall

Server
Big Bad Internet

HaxOR

FIREWALL

SERVER

Printer
Big Bad Internet

Hax0R

FIREWALL

SERVER

Printer

2/25/13 Cui Costello Stolfo - NDSS 2013
Big Bad Internet

Hax0R

FIRE WALL

Phone

SERVER

Printer
In ZKNOW...
Let’s Talk
HP Koan: How does printer update firmware?...
HP Koan: How does printer update firmware?... Print!
HP Koan: How does printer update firmware?... Print!

Remote firmware update using the LPR command

Complete the following steps to update the firmware by using the LPR command.

1. Type lpr -P -S -o I -OR- lpr -S -Pbinps, where can be either the TCP/IP address or the hostname of the product, and where is the filename of the .RFU file from a command window.

 NOTE: The parameter (-o I) consists of a lowercase "O", not a zero, and a lowercase "L", not a numeral 1. This parameter sets the transport protocol to binary mode.

2. Press Enter on the keyboard. The messages described in the section "Printer messages during the firmware update" appear on the control panel.

 NOTE: The product automatically restarts the firmware to activate the update. At the end of the update process, the Ready message appears on the control panel.

3. Type exit at the command prompt to close the command window.

You see where this is going...
HP RFU (Remote Firmware Update) File

000000	40 50 4A 4C 20 43 4F 4D 4D 45 4E 54 20 4D 4F 44 45 4C 3D 48
000014	50 20 4C 61 73 65 72 4A 65 74 20 50 32 30 35 35 64 6E 0A 40
000028	50 4A 4C 20 43 4F 4D 4D 45 4E 54 20 56 45 52 53 49 4F 4E 3D
00003C	38 33 35 30 34 0A 4B 4C 20 43 4F 4D 4D 45 4E 54 20 44
000050	41 54 45 43 4F 44 45 3D 32 30 31 30 33 33 30 38 0A 4D 50 4A
000064	4C 20 55 50 47 52 41 44 45 20 53 49 5A 45 3D 37 39 32 39 39
000078	30 36 00 00 00 00 00 00 00 00 00 2D 00 00 00 55 41 54 00 00 01
00008C	20 00 67 67 09 00 00 02 00 00 00 00 00 00 67 FD 00 00 20
0000B4	08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000DC	6F 00 00 04 4D 3C 00 68 1D E9 00 00 21 86 00 00 50 91 00 68 3F
0000F0	0C 00 68 80 53 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00
000104	83 00 00 4D BF 00 68 C1 A1 00 00 20 23 00 00 4B 2A 00 68 E1
000118	5A 00 69 22 24 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00
00012C	5A 00 69 22 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00
000140	42 00 00 00 50 24 00 69 64 88 00 00 24 00 00 00 00 00 00 00 00
000154	95 00 00 24 35 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000168	0E 00 69 D0 4E 00 00 00 00 28 24 00 00 7A 0E 00 69 F8 72 00 00 22
00017C	0D 00 00 50 D6 00 6A 1B 3F 00 00 21 3E 00 00 52 00 00 6A 3C
000190	0D 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

- **@PJL COMMENT MODEL=** P LaserJet P2055dn
- **@PJL COMMENT VERSION=** 835049
- **@PJL COMMENT D ATECODE=** 20100308
- **@PJL COMMENT L UPGRADE SIZE=** 972999
- **@PJL COMMENT L ENTR Y=** 0648-12345
- **@PJL COMMENT E R LANGUAGE=** ACP:RPC
- **M<h>** ! | P h?
- **o** (**M h** | **P**
- **PS** | **L h**
- **M h** | **K** | **M**
- **Z;i$$N$$iCF:**
- **B** | **P$;id$$T$$i**
- **$5$$Ti$$i$**
- **N** ($$$z$$i$$r$$
- **P j?$$i$$R$$j<
- **K$$j$$p$$Q**
Stating the Obvious

- LPR / Raw printing has **NO AUTHENTICATION MECHANISM**
Stating the Obvious

- LPR / Raw printing has no authentication mechanism
- PJL can be embedded in PostScript (and lots else)
Stating the Obvious

- LPR / Raw printing has no authentication mechanism
- PJL can be embedded in postscript (and lots else)

- Malicious RFU + Doc Format Attack Vector

 Self-propagating printer malware
 Embedded advanced persistent asset
 Embedded spear-phishing, etc
The Plan

- **Reverse RFU Format**
- **Construct Printer Rootkit**
- **Repack Malicious RFU**
- **Embed in Document**
Reverse RFU Format

What didn’t work…

• Stare at binary blob
• Common FS headers
• Googling
Reverse RFU Format

What **did** work…

- Reversing the bootloader
Reverse RFU Format

What did work…

- Reversing the bootloader
- Monkey soldering
- Arduino
- Duct-tape
Reverse RFU Format

Main SoC Boots from SPI flash chip

Main SoC = Mystery ARM
No datasheet

Spansion Flash
Have datasheet!

2055DN Formatter Board
<table>
<thead>
<tr>
<th>Operation</th>
<th>Command</th>
<th>One Byte Command Code</th>
<th>Description</th>
<th>Address Bytes</th>
<th>Mode Bit Cycle</th>
<th>Dummy Bytes</th>
<th>Data Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>READ</td>
<td>(03h) 0000 0011</td>
<td>Read Data bytes</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>FAST_READ</td>
<td>(0Bh) 0000 1011</td>
<td>Read Data bytes at Fast Speed</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>DOR</td>
<td>(3Bh) 0011 0011</td>
<td>Dual Output Read</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>QOR</td>
<td>(6Bh) 0110 0111</td>
<td>Quad Output Read</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>DIOR</td>
<td>(BBh) 1011 0111</td>
<td>Dual I/O High Performance Read</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>QIOR</td>
<td>(EBh) 1110 0111</td>
<td>Quad I/O High Performance Read</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>RDID</td>
<td>(9Fh) 1001 1111</td>
<td>Read Identification</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 to 81</td>
</tr>
<tr>
<td></td>
<td>READ_ID</td>
<td>(90h) 1001 0000</td>
<td>Read Manufacturer and Device Identification</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1 to ∞</td>
</tr>
<tr>
<td>Write Control</td>
<td>WREN</td>
<td>(06h) 0000 0110</td>
<td>Write Enable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>WRDI</td>
<td>(04h) 0000 0100</td>
<td>Write Disable</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erase</td>
<td>P4E</td>
<td>(20h) 0010 0000</td>
<td>4 KB Parameter Sector Erase</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P8E</td>
<td>(40h) 0100 0000</td>
<td>8 KB (two 4 KB) Parameter Sector Erase</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SE</td>
<td>(D8h) 1101 1000</td>
<td>64 KB Sector Erase</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>BE</td>
<td>(60h) 0110 0000 or (C7h) 1100 0111</td>
<td>Bulk Erase</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Program</td>
<td>PP</td>
<td>(02h) 0000 0010</td>
<td>Page Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1 to 256</td>
</tr>
<tr>
<td></td>
<td>QPP</td>
<td>(32h) 0011 0010</td>
<td>Quad Page Programming</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1 to 256</td>
</tr>
<tr>
<td>Status &</td>
<td>RDSR</td>
<td>(05h) 0000 0101</td>
<td>Read Status Register</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td>Configuration</td>
<td>WRR</td>
<td>(01h) 0000 0001</td>
<td>Write (Status & Configuration) Registers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
<tr>
<td>Register</td>
<td>RCR</td>
<td>(35h) 0011 0101</td>
<td>Read Configuration Register (CFG)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1 to ∞</td>
</tr>
<tr>
<td></td>
<td>CLSR</td>
<td>(30h) 0011 0000</td>
<td>Reset the Erase and Program Fail Flag (SR5 and SR6) and restore normal operation</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Power Saving</td>
<td>DP</td>
<td>(B9h) 1011 1001</td>
<td>Deep Power-Down</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>RES</td>
<td>(ABh) 1010 1011</td>
<td>Release from Deep Power-Down Mode</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>OTPP</td>
<td>(42h) 0100 0010</td>
<td>Programs one byte of data in OTP memory space</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>OTPR</td>
<td>(4Bh) 0100 1011</td>
<td>Read data in the OTP memory space</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1 to ∞</td>
</tr>
</tbody>
</table>
Reverse RFU Format
Reverse RFU Format
Reverse RFU Format

Awesomesauce!
Security Analysis

- No memory-space isolation / separation
- No “kernel”-level security
- Everything runs as supervisor mode on CPU

- Any vulnerability anywhere leads to full compromise
POC Printer Rootkit

- 3KB of ARM assembly
- Print-job interceptor
- Reverse-IP Proxy
- Engine-controller hijacker
- Live Demo @ 28c3
Embed in Doc

(reflexive attack)

\[
\begin{array}{cccc}
550 & 4.242549 & 6.061096 & 4.8480 \\
04 & 7.905825 & 4.242549 & 6.061096 \\
6 & 3.030548 & 6.061096 & 0.000000 \\
\end{array}
\]

\[
\text{[34,302.39801, 92.950996, mf]}
\]

\[
(+)s_{\text{rep}}p_{\text{end}}F_{\%\text{Trailer}}F_{\%\text{EOJ}}F_{\%\text{-12345}}F_{\%\text{-12345x@PjL ENT}}
\]

\[
\text{ENTER LANGUAGE=ACL}\%
\]

\[
\text{y UAT g \ g g g g g g g g g g g M g M P g w t}
\]

\[
(\text{M h
Let's Quantify
Disclosure: November 21st

Firmware Release: December 23rd

56

Printer Firmwares Have Been Updated

2005 - 2011

2/25/13

Cui Costello Stolfo - NDSS 2013
CVE: CVE-2011-4161 SSRT: 100692 rev.6
How many vulnerable printers are there in the world?

MONTHS AFTER PATCH RELEASE

How many vulnerable printers are there in the world?
<table>
<thead>
<tr>
<th>P otentially vulnerable printers</th>
<th>90,847</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printers with identifiable</td>
<td>74,770</td>
</tr>
<tr>
<td>firmware datecode</td>
<td></td>
</tr>
<tr>
<td>Number of patched printers</td>
<td>808</td>
</tr>
<tr>
<td>Overall patch rate</td>
<td>1.08%</td>
</tr>
</tbody>
</table>

TABLE I

Observed population of printers vulnerable to the HP-RFU attack on IPv4.

MONTHS AFTER PATCH RELEASE

HOW MANY VULNERABLE PRINTERS ARE THERE IN THE WORLD?
How many vulnerable printers are there in the world?

Potentially vulnerable printers
Printers with identifiable firmware datecode
Number of patched printers
Overall patch rate

TABLE I
OBSERVED POPULATION OF PRINTERS VULNERABLE TO THE HP-RFU ATTACK ON IPv4.

MONTHS AFTER PATCH RELEASE

HOW MANY VULNERABLE PRINTERS ARE THERE IN THE WORLD?
Potentially vulnerable printers
Printers with identifiable firmware datecode
Number of patched printers
Overall patch rate

| | 76,288 | 5659 | 7.42% |

TABLE I

Observed population of printers vulnerable to the HP-RFU attack on IPv4.

14 months after patch release

How many vulnerable printers are there in the world?
Interesting Findings

- EDU has the most vulnerable printers

<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Avg Age (years)</th>
<th>Oldest Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>48,626</td>
<td>4.13</td>
<td>1993-08-20</td>
</tr>
<tr>
<td>ISP</td>
<td>4,650</td>
<td>3.70</td>
<td>1994-10-12</td>
</tr>
<tr>
<td>Enterprise</td>
<td>2,842</td>
<td>4.02</td>
<td>1992-12-16</td>
</tr>
<tr>
<td>Military</td>
<td>201</td>
<td>4.63</td>
<td>1999-10-30</td>
</tr>
<tr>
<td>Government</td>
<td>126</td>
<td>4.33</td>
<td>1996-12-20</td>
</tr>
</tbody>
</table>

TABLE III
Organizational distribution of vulnerable printers.
Interesting Findings

- **EDU has the most vulnerable printers**
- **Average printer is ~4.5 years old**

<table>
<thead>
<tr>
<th>Region</th>
<th>Count</th>
<th>Avg Age (years)</th>
<th>Oldest Firmware</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. America</td>
<td>47,840</td>
<td>4.46</td>
<td>1992-12-16</td>
</tr>
<tr>
<td>Europe</td>
<td>14,196</td>
<td>4.16</td>
<td>1993-08-20</td>
</tr>
<tr>
<td>Asia</td>
<td>10,353</td>
<td>3.77</td>
<td>1998-09-02</td>
</tr>
<tr>
<td>Oceania</td>
<td>1,081</td>
<td>4.79</td>
<td>1998-09-02</td>
</tr>
<tr>
<td>S. America</td>
<td>673</td>
<td>3.43</td>
<td>1999-01-27</td>
</tr>
<tr>
<td>Africa</td>
<td>60</td>
<td>4.56</td>
<td>2001-04-26</td>
</tr>
</tbody>
</table>
Interesting Findings

- EDU has the most vulnerable printers
- Average printer is ~4.5 years old
- Found **201 vulnerable printers in DOD (All removed)**
Interesting Findings

• EDU has the most vulnerable printers
• Average printer is ~4.5 years old

• Found 201 vulnerable printers in DOD (All removed)
• Found 6 vulnerable printers in HP (3 still there)
Patch out
Problem Solved?
VULNERABLE THIRD-PARTY LIBRARIES

zlib: CA-2002-07, CERT- {68062, 238678} Discovered in 2002, zlib ver. 1.1.3 and earlier have a double free bug that allows arbitrary code execution [20]. In 2005 the vendor was notified of a buffer overflow in zlib ver. 1.2.1 and 1.2.2 [21]. The vendor was notified of a DOS condition in zlib ver. 1.2.0.x and 1.2.x in 2004 [22].

OpenSSL: CVE- {2009-3245, 2006-3738, 2006-4339} There are over 100 known vulnerabilities in various versions of OpenSSL. We scanned for the above three critical vulnerabilities in our firmware update dataset because they involve features that are likely to be reachable via network attack. The first two vulnerabilities can lead to arbitrary code execution. The last vulnerability can bypass x.509 certificate verification.
<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer models analyzed</td>
<td>63</td>
</tr>
<tr>
<td>RFU images analyzed</td>
<td>373</td>
</tr>
<tr>
<td>All RFUs w/ at least 1 vulnerability</td>
<td>300</td>
</tr>
<tr>
<td>Latest RFUs w/ at least 1 vulnerability</td>
<td>41 (65.1%)</td>
</tr>
<tr>
<td>Most common zlib version</td>
<td>1.1.4</td>
</tr>
<tr>
<td>Most common OpenSSL version</td>
<td>0.9.7b</td>
</tr>
</tbody>
</table>

TABLE VI

THIRD-PARTY LIBRARY VULNERABILITY ANALYSIS OBSERVATIONS.
THIRD-PARTY LIBRARY VULNERABILITIES FOUND IN PRINTER Firmware UPDATES

Printer Models

RFUs w/ Vuln. OpenSSL
RFUs w/ Vuln. zlib
Take Aways
HACK A

Printer

Phone
Hack A

OWN A

Printer
Phone

Anti-Virus
IDS
Patch-Tuesday

Server
Signed code ≠ Secure code
M E E T
SYMBIOTE

RAID 2011
Defending Legacy Embedded Systems With Software Symbiotes

ACSAC 2011
From Prey To Hunter: Transforming Legacy Embedded Devices Into Exploitation Sensor Grids

USENIX/WOOT 2011
Killing the Myth of Cisco IOS Diversity

NDSS 2013
When Firmware Modifications Attack: A Case Study of Embedded Exploitation
Symbiote Structure

Drop in a Defensive Symbiote Payload
Much Thanks!

ANUP KOTALWAR
JATIN KATARIA
YUAN KANG
Much Thanks!

ANUP KOTALWAR
JATIN KATARIA
YUAN KANG
ang@cs.columbia.edu