COMPA: Detecting Compromised Accounts on Social Networks

Manuel Egele, Gianluca Stringhini, Christopher Kruegel, Giovanni Vigna
megele@cmu.edu,
{gianluca, chris, vigna}@cs.ucsb.edu
Carnegie Mellon University & UC Santa Barbara
Recently on Twitter ...
Why Compromised Accounts?

• Historically, attackers created fake accounts
 – Detection mechanisms proposed
 – Detection implemented by OSNs
 – Identified fake accounts can simply be removed

• Attackers compromise legitimate accounts
 – Leverage existing trust relationships
 – Fake account detection not applicable
 – Cannot be removed easily
 – Involves costly password-reset process
COMPA: Overview

Detect compromised accounts by observing change in behavior

• Statistical modeling
 – Extract behavioral profile for accounts

• Anomaly detection
 – Compare new messages against observed behavior

• Legitimate changes might seem anomalous
 – Identify campaigns by grouping similar messages and look for similar compromises
COMPA: Overview

Step 1: Group similar messages
Step 2: Match messages with behavioral profile
Statistical Modeling

• Behavioral profile: collection of statistical models
• Build statistical models of features to model normal behavior
• Features:
 – Direct User Interaction
 – Message Topic
 – Links in Messages
 – Message Text (language)
 – Time (hour of day)
 – Message Source (application)
 – User Proximity
Statistical Models

• Input: Message stream (e.g., Twitter timeline, Facebook posts)
• Extract features for each message
• Train model for each feature
• Model M set of tuples $<f_v, c>$
 – $M_{lang} \{<\text{English, 5}>, <\text{German, 3}>\}$
• A behavioral profile is a collection of models
• Evaluate new messages by comparing feature values against trained models
Evaluating New Messages (cont.)

• How to compare individual anomaly scores against a behavioral profile?
• Anomaly score: weighted sum of model values
• If anomaly score exceeds threshold → message violates the behavioral profile
• Weights & threshold determined through Weka’s SMO on labeled training dataset
Case Study

• July 4th 2011, @foxnewspolitics
 BREAKING NEWS: President @BarackObama assassinated, 2 gunshot wounds have proved too much. It's a sad 4th for #america. #obamadead RIP

• Anomaly scores:
 – Time: 1.00 (1:24am EST, usually 8-10am EST)
 – Source: 0.94 (Web, commonly using TweetDeck)
 – Hashtag: 0.88
 – Domain: 0.26
 – Mention: 0.67
 – Lang: 0.00
Detecting Campaigns

• Single profile violation might be due to legitimate change of behavior
• Multiple accounts experience similar violating changes → Campaign
• How to define similarity:
 – Content similarity
 – Similar landing pages
Detecting Similar Messages

• Content similarity
 – Consider two messages similar if they share a common n-gram (e.g., 4-words)
 – Filter template messages, e.g., Foursquare and Nike+

• Link similarity
 – Consider two messages similar if they share a common link or landing-page
Evaluation: Data Sources

• 10% of public Twitter activity (1.4 billion tweets)
 – Individual tweets
 – No direct messages, no protected profile tweets
 – May 13, 2011 – Aug 12, 2011

• 20,000 REST-API requests to Twitter / hour
 – To retrieve message stream (timeline)
 – Max 200 tweets/request

• 106 million Facebook posts
 – Five geographical networks from 2009
 (London, NY, LA, Monterey Bay, Santa Barbara)
Evaluation

• Every hour
 – Group similar messages
 – Build behavioral profiles for accounts in groups
 – Compare messages against behavioral profiles
 – If many profiles are violated detect compromise
 – 500,000 distinct users / hour
Evaluation

• Text similarity:
 – 374,920 groups identified
 – 9,362 compromised (343,229 accounts)
 – FP: 377 groups (4%), 12,382 accounts (3.6%)

• Landing page similarity:
 – 14,548 groups identified
 – 1,236 compromised (54,907 accounts)
 – FP: 72 groups (5.8%), 2,141 accounts (3.8%)

• Facebook:
 – 48,586 groups identified
 – 671 compromised (11,499 accounts)
 – FP: 22 groups (3.3%), 412 accounts (3.6%)
Case Studies

• Spam is not exclusively using URLs
 Obama is giving FREE Gas Cards Worth $250! Call now-> 1 888-858-5783 (US Only)@@@

• Similar spam applications are used
 [Add Seguidores] 31/03/11
 [Add Seguidores] 01-04

• Similar messages linking to four different “Get More Follower” sites
 – They use the same backend i.e., one cannot sign up at two of the services simultaneously
Message Persistence

- Legitimate tweets are persistent (16% churn)
- Violating tweets are deleted (76% churn)
Evaluation: XSS Worm

http://google.com/@"onmouseover='alert(1)’”

• Choose tweet (t_0) and user (u_0) at random
• Worm propagates iff B follows A and B was active when A posted the worm message
 – User is active if posted +/- 5 minutes using web client
• Worm propagates recursively (e.g., to active friends of A, their active friends, etc.)
• Replace the messages used to determine “active” with worm message
• Compa detects the worm outbreak after 20 minutes or 2,256 infections
• Conservative propagation strategy, real worms spread to up to 40,000 accounts in 10 minutes.
Summary

• Attackers compromise accounts
 – Leverage established trust relationships
 – Cannot easily be removed by OSN
• Build behavioral profiles for accounts
• Compare new messages against profiles
• Group compromised accounts
 – Detect campaigns
• Evaluated on 1.4B tweets and 106M Facebook messages
Questions?
END
Evaluating New Messages

• Extract features from new message
• Compare features with Models
 – Each model returns anomaly score from [0,1]
 – $M_{\text{lang}} \{<\text{English, 5}>, <\text{German, 3}>\}$
 – New message is: English, German, or other (e.g., Italian)