Classification of Quantum Repeater Attacks

Shigeya Suzuki, Rodney Van Meter

at SENT ’15, 8th February 2015, San Diego CA, USA
Presentation Outline

• Quantum Repeater and its elements
• Model of Quantum Repeater
• Classification of Quantum Repeater Attacks
Quantum Repeater and its elements
Quantum Application and Repeater

• A quantum application, or its server will use quantum state teleported from client to do something interesting

• To create Quantum Internet, we need to have a way to application client to send a quantum state to a quantum application server

• Quantum repeater, which take the roles of a router in classical internet, is a key to create Quantum Internet
Example
Quantum Repeater Elements

• Qubits
• Fidelity of a Qubit
• Entanglement
• Bell Pair and Teleportation
• Fidelity and Purification
• Entanglement Swapping
• Multi-hop entanglement by Purification and Entanglement swap
• Quantum Repeater
Qubits

• Each qubits represents single quantum state
• May hold either simple state or complex states like superposition
• Measuring the state of a qubit cause state collapse

Bloch Sphere

By Glosser.ca, CC BY-SA 3.0, via Wikimedia Commons
Fidelity of a Qubit

• How well the qubit hardware correctly represents the state we want to set is important

• Described by the *fidelity* of the qubit
 – e.g., you want set direction of the spin of an electron, and how close the spin actually points to your desired direction is the fidelity

• Essentially, it’s the probability that the state does what you want when you use/measure it
Entanglement

• By using some known procedure, it is possible to create entangled pairs of qubits
• Some operations on one entangled qubit affects the other
 ➔ does not mean we can remotely flip a qubit!
• Happens over any distance
 ➔ cannot be used to send data faster than light
Bell Pair and Teleportation

• Bell Pair, which is a kind of entanglement state, can be used to teleport one quantum state from one side of the entanglement to the other side
• Current known scheme allow to create Bell Pair among two distant qubits connected via a fiber
• Requires supporting classical communication
• Destroys entanglement
 ➞ so making more entanglement is the work of the network!

1. A coupled with B, then both A and B measured
2. Apply operation by the measurement result transforms C to state of A

(1) A \(\bigcirc\)
(2) \(\bigcirc\) B

\(\bigcirc\)

\(\bigcirc\)

new C

© Shigeya Suzuki, All Rights Reserved
Fidelity and Purification

• Just created entanglement between two nodes may not have desired fidelity
• Various qubit operations may diminish fidelity, too
• To use for communication, either improve fidelity of the qubit or apply error correction scheme using multiple qubits
• Purification protocol creates single better fidelity entangled pair from two entangled pairs
Entanglement Swapping

- Entanglement swapping operation extends distance of entangled qubits by splicing two pairs of entanglements into one

- After entanglement swapping, qubits in the middle node does not provide any role, can be reused
Multi-hop entanglement by Purification and Entanglement swap

• By using purification and entanglement swap repeatedly in coordinated manner among nodes, we can create entangled qubits between any two user specified nodes
Qubits - security point of view

• When Alice and Bob want to communicate, we want
 – Detect existence of any eavesdropper
 – To be sure Alice and Bob are actually communicating
Detection of eavesdroppers

• By applying quantum tomography on randomly select entangled qubits to detect eavesdropper

• But If an eavesdropper can predict the selection of qubits for quantum tomography, he/she can remain undetectable by not touching the selected qubit
Model of Quantum Repeater System
Quantum Application Node

- QNIC
- QNIC qubits
- Realtime Controller
- Quantum Links
- To Other QNodes
- To Classical Network

- Node Controller
- Classical Links
- QApplication
- Realtime Controller
- Term. qubits

- CNIC
Peculiarities of Quantum Repeaters

- Quantum operation require classical communications
- Requires realtime operation
- Hop by hop decision on each router is not feasible
Quantum operation require classical communications

• Many of the operation on entangled pair, or teleportation require communication using classical information system
Requires Realtime operation

- Operation should be done in realtime, synchronized manner
 - All of the operation onto qubits must be controlled by realtime manner
 - Some of the operation among nodes should be done in accurately synchronized clocks
Hop by hop decision is not feasible

• (Extending entanglement one hop at a time is not feasible)

• Creation of end-to-end entanglement require repeated and coordinated creation of entanglements among participating nodes in between two end nodes
 – Creation of an entangled pair require physical connection
 – Qubit’s fidelity decays as time passes
 • Purification require two entangled pairs on same nodes
Classification of Attacks
Elements Grouping
wrt attack vector characteristics

• Qubits
 – Terminal qubits
 – Interface qubits
 – Buffer qubits

• Channels
 – In-node quantum channels
 – Inter-node quantum channels
 – Inter-node classical channels

• Classical node resources
Qubits

• Terminal qubits
 – Qubits used as interface to application. Has direct interface to application, but no direct interface to outside of the node

• Interface qubits
 – Qubits which has direct interface to outside of the node

• Buffer qubits
 – Qubits which works in between terminal qubits and interface qubits to work as buffers. No direct interface to application or outside of the node
Channels

• In-node quantum channels
• Inter-node quantum channels
• Inter-node classical channels
Classical node resources

• Node has usual classical components such as:
 – Power supply and external power
 – Clocks
 – Buses
 – etc, etc…
Relationship with RFID system

• Quantum repeater systems and RFID systems has similar properties

• Both systems are tightly coupled hybrid systems of sensing and software elements, and also expect to make use of the effects of interaction with the outside world

• Due to this, We have referenced some of discussion on attack to RFID systems
Attack to Qubits

<table>
<thead>
<tr>
<th></th>
<th>Confidentiality</th>
<th>Integrity</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal qubits</td>
<td>Eavesdropper detectable</td>
<td>Possibility of out-of-system attacks</td>
<td>Vulnerable to direct attacks and its variants, like classical system</td>
</tr>
<tr>
<td>Interface qubits</td>
<td>Eavesdropper detectable but direct attack to Quantum interface demonstrated</td>
<td>(same as above)</td>
<td>(same as above)</td>
</tr>
<tr>
<td>Buffer qubits</td>
<td>Eavesdropper detectable</td>
<td>(same as above)</td>
<td>(same as above)</td>
</tr>
</tbody>
</table>
Attack to Quantum Channels

<table>
<thead>
<tr>
<th></th>
<th>Confidentiality</th>
<th>Integrity</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-node quantum</td>
<td>Safe</td>
<td>N/A</td>
<td>Vulnerable to direct attacks and its variants, like classical system</td>
</tr>
<tr>
<td>channels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-node quantum</td>
<td>Eavesdropper</td>
<td>N/A</td>
<td>Vulnerable to direct attacks and its variants, like classical system</td>
</tr>
<tr>
<td>channels</td>
<td>detectable but</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>direct attack to Quantum interface demonstrated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attack to Classical Channels and Classical node resources

<table>
<thead>
<tr>
<th></th>
<th>Confidentiality</th>
<th>Integrity</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-node classical channels</td>
<td>Vulnerable to Classical Confidentiality attack possible</td>
<td>N/A</td>
<td>Vulnerable to Classical Availability attack possible</td>
</tr>
<tr>
<td>Classical node resources</td>
<td>Vulnerable to Classical Confidentiality attack possible</td>
<td>Vulnerable to Classical Integrity attack possible</td>
<td>Vulnerable to Classical Availability attack possible</td>
</tr>
</tbody>
</table>
Summary

• In this paper, we provided an model of a quantum repeater network and grouped elements of them, then, provided an analysis on a quantum repeater architecture based on our current knowledge
 – On confidentiality, quantum repeater systems have great advantage by applying quantum tomography to detect third party eavesdropper
 – On integrity and availability, a quantum repeater system seems to be not so different from a classical network system
• Since quantum repeater system heavily depends on classical information system, classical part is a key to make quantum repeater system secure

Acknowledgements

This research has been supported by Asian Office of Aerospace Research and Development, Air Force Office of Scientific Research under grant 144051