Secure Virtual Enclaves

February 4, 2000

Deborah Shands, Richard Yee
Jay Jacobs, E. John Sebes
Outline

- Project Overview
- SVE Architecture
- Observations
- Results/Conclusions
Coalition Examples

- **Commercial**: outsourcing, contractors, or customers needing limited access to corporate data
- **Civilian**: disaster/incident response teams and crisis management
- **Military**: joint task forces engaged in distributed collaborative planning
SVE Project Goals

- Support collaborative computing
- Provide mechanisms to control sharing
- Enable unified approach to multiple distributed application technologies (e.g., Java, DCOM, web apps.)
- Support dynamic access policies, allowing changes to: SVE membership, resources to be shared, and access types permitted
SVE Project Constraints

- Ensure application transparency
- Retain organizational autonomy over local resources
- Use only standard network protocols
- Use only commercially available operating systems
Legend:
- Services in SVE
- Services partly in SVE
- Services not in SVE
- Principals in SVE
- Principals not in SVE
SVE Concept of Operation

- Virtual enclave: formed by collaborators sharing resources and services
 - Enclaves define limited trust relationships with one another
 - Each enclave specifies internal resources accessible to partners

- Secure virtual enclave: each enclave’s exports are
 - Protected from access by non-SVE members
 - Available to SVE members as specified by access policy

- Dynamic modification: automatic reconfiguration due to changes in SVE membership, resources, access policy
Outline

- Project Overview
- SVE Architecture
- Observations
- Results/Conclusions
Client-Server Architecture
SVE Infrastructure Architecture

Enclave A

SPEX Controller

Policy GUI

SPEX Admin GUI

Access Calculator

Interceptor/Enforcer

Enclave B

SPEX Controller

Policy GUI

SPEX Admin GUI

Access Calculator

Interceptor/Enforcer

SVE Control Messages
SVE Policy Semantics

- Current SVE policy semantics are very similar to Object-Oriented Domain and Type Enforcement (OODTE)
- Principals are mapped to a **domain** equivalence class using a set of domain derivation rules
- Resources are mapped to a **type** equivalence class
- **Access matrix** is formed by associating a set of types with a given domain
- **Principal recognition rules** are domain derivation rules that are published by an SVE member to allow its principals to be recognized by other SVE members
Outline

- Project Overview
- SVE Architecture
- Observations
- Results/Conclusions
Enclave Autonomy

- Organizations require a certain level of autonomy
- Autonomy is a difficult requirement for distributed security systems
- SVE system supports autonomy
 - Most components of access policy used only within the local enclave
 - An enclave may unilaterally withdraw from an SVE at any time
- Need to balance autonomy and collaboration requirements via business decisions
Ambiguous Policy Semantics

- Meaning of policy statements known only within defining enclave (e.g., “manager” role)
- How to prevent misunderstandings as coalitions are formed???
 - Establish semantics offline
 - Represent and negotiate semantics within system
Outline

- Project Overview
- SVE Architecture
- Observations
- Results/Conclusions
SVE Prototype Results

- Supports coalition sharing
- Supports dynamic changes to both coalition membership and resource access policies
- Supports enclave autonomy
- Provides experimental platform for studying security policies for distributed systems