
Attack Patterns for Black-Box Security Testing of
Multi-Party Web Applications

Avinash Sudhodanan
University of Trento, Italy

Security & Trust, FBK, Italy
6.avinash@gmail.com

Alessandro Armando
DIBRIS, University of Genova
Security & Trust, FBK, Italy

armando@fbk.eu

Roberto Carbone
Security & Trust, FBK, Italy

carbone@fbk.eu

Luca Compagna
SAP Labs France

luca.compagna@sap.com

Abstract—The advent of Software-as-a-Service (SaaS) has led
to the development of multi-party web applications (MPWAs).
MPWAs rely on core trusted third-party systems (e.g., payment
servers, identity providers) and protocols such as Cashier-as-a-
Service (CaaS), Single Sign-On (SSO) to deliver business services
to users. Motivated by the large number of attacks discovered
against MPWAs and by the lack of a single general-purpose
application-agnostic technique to support their discovery, we
propose an automatic technique based on attack patterns for
black-box, security testing of MPWAs. Our approach stems from
the observation that attacks against popular MPWAs share a
number of similarities, even if the underlying protocols and
services are different. In this paper, we target six different
replay attacks, a login CSRF attack and a persistent XSS
attack. Firstly, we propose a methodology in which security
experts can create attack patterns from known attacks. Secondly,
we present a security testing framework that leverages attack
patterns to automatically generate test cases for testing the
security of MPWAs. We implemented our ideas on top of OWASP
ZAP (a popular, open-source penetration testing tool), created
seven attack patterns that correspond to thirteen prominent
attacks from the literature and discovered twenty one previously
unknown vulnerabilities in prominent MPWAs (e.g., twitter.com,
developer.linkedin.com, pinterest.com), including MPWAs that do
not belong to SSO and CaaS families.

I. INTRODUCTION

An increasing number of business critical, online applica-
tions leverage trusted third parties in conjunction with web-
based security protocols to meet their security needs. For
instance, many online applications rely on authentication as-
sertions issued by identity providers to authenticate users using
a variety of web-based single sign-on (SSO) protocols (e.g.,
SAML SSO v2.0, OpenID Connect). Similarly, online shop-
ping applications use online payment services and Cashier-as-
a-Service (CaaS) protocols to obtain proof-of-payment before
delivering the purchased items (e.g., Express Checkout [11]
and PayPal Payment Standard [12]). We refer to this broad
class of protocols as security-critical Multi-Party Web Appli-
cations (MPWAs). Three entities take part in the protocols: the

User (through a web browser B), the web application (playing
the role of Service Provider, SP), and a trusted third party
(TTP).

The design and implementation of the protocols used by
security-critical MPWAs are notoriously error-prone. Several
vulnerabilities have been reported in the last few years. For
instance, the incorrect handling of the OAuth 2.0 access token
by a vulnerable SP can be exploited by an attacker hosting
another SP [38]. If the victim User logs into the attacker’s
SP, the attacker obtains an access token (issued by TTP) from
the victim and can replay it in the vulnerable SP to login
as the victim. A similar attack was previously discovered in
the SAML-based implementation deployed by Google [23].
(Here the SAML authentication assertion is replayed instead
of the OAuth 2.0 access token.) Similar attacks have also been
detected in CaaS-enabled scenarios [35], [32]. For instance, a
vulnerability in osCommerce v2.3.1 that allowed an attacker
to shop for free has been reported in [32]: the attacker controls
a SP and obtains an account identifier from PayPal for paying
herself; later on, she replays this value in a subsequent session
with a vulnerable SP where she purchases a product by paying
herself. Recently, a token fixation attack in PayPal Express
Checkout flow was discovered [18] which is very similar to
the session fixation attack in OAuth 1.0 [10]. The problem is
exacerbated by the large number of deployments. As a matter
of fact, over 20% of the top twenty-thousand Alexa top US
websites have a vulnerable implementation of the Facebook
SSO [40].

The aforementioned attacks have been discovered through
a variety of domain-specific techniques with different levels of
complexity, ranging from formal verification [23], white-box
analysis [35], black-box testing [32], to manual testing [18].
In this paper, we pursue a different approach and propose
an automatic black-box testing technique for security-critical
MPWAs. Our approach is based on an observation and a
conjecture. The observation is that, regardless of their purpose,
the security protocols at the core of MPWAs share a number
of features:

1) By interacting with SP (and/or TTP), User authenti-
cates and/or authorizes some actions,

2) TTP (SP, resp.) generates a security token,
3) the security token is dispatched to SP (TTP, resp.)

through the web browser, and
4) SP (TTP, resp.) checks the security token and com-

pletes the protocol by taking some security-critical
decisions.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23286

The conjecture is that the attacks found in the literature (and
possibly many more still to be discovered) are instances of a
limited number attack patterns. We conducted a detailed study
of attacks discovered in MPWAs of real-world complexity
and analyzed their similarities. This led us to identify a
small number of application-independent attack patterns that
concisely describe the actions performed by attackers while
performing these attacks.

To assess the generality and the effectiveness of our
approach, we have developed a security testing framework
based on OWASP ZAP1, a popular open-source penetration
testing tool, and run it against a number of prominent MPWA
implementations. Our tool has been able to identify:
• two previously unknown attacks against websites in-

tegrating LinkedIn’s Javascript API-based SSO that
causes an access token replay attack and a persistent
XSS attack;

• a previously unknown redirection URI fixation attack
against the implementation of the OAuth 2.0 protocol
in PayPal’s “Log in with PayPal” SSO solution which
allows a network attacker to steal the authorization
code of the victim and replay it to login as the victim
in any SP website using the same SSO solution;

• a previously unknown attack in the payment checkout
solution offered by Stripe (integrated in over 17,000
websites [15]); the attack allows an attacker to imper-
sonate a SP to obtain a token from the victim User
which is subsequently used to shop at the imperson-
ated SP’s online shop using the victim’s credit card;
and

• seven previously unknown vulnerabilities in a num-
ber of websites (e.g., developer.linkedin.com, pin-
terest.com, websta.me) leveraging the SSO solutions
offered by LinkedIn, Facebook, and Instagram.

Besides the SSO and the CaaS scenarios, we investigated a
popular family of MPWAs, namely the Verificaton Via Email
(VvE) scenario, which is often used by websites to send
security-sensitive information to users via email. By testing the
security of Alexa Top 500 websites we found that a number
of prominent websites such as twitter.com, open.sap.com are
vulnerable to login CSRF attacks. The following are the main
contributions of this paper:

1) We show that the attack strategies behind thirteen
prominent MPWA attacks can be represented using
seven attack patterns, and these attack patterns are
general enough to discover similar attacks in MPWAs
implementing different protocols and in different
MPWA scenarios. For instance, an attack pattern
inspired by various SSO attacks from the literature
was able to automatically discover a new attack in
the CaaS scenario.

2) The idea that prior attacks proposed on SSO and CaaS
share commonalities is not new [39], [29]. However,
ours is the first black-box security testing approach
that has experimental evidence of applicability in both
SSO and CaaS domains.

3) Prior work on security analysis of MPWAs is focused
only on SSO and CaaS scenarios. We evaluate the
MPWA scenario in which websites send security-
sensitive information to users via email and show that

1www.owasp.org/index.php/OWASP Zed Attack Proxy Project

eight out of the top Alexa global 500 websites2 are
vulnerable to login CSRF attacks.

4) We have developed a fully functional prototype of
our approach on OWASP ZAP, a widely-used open-
source penetration testing tool. The tool is available
online (upon request) at the companion website.3

5) We have been able to identify 11 previously unknown
vulnerabilities in security-critical MPWAs leveraging
the SSO and CaaS protocols of LinkedIn, Facebook,
Instagram, PayPal, and Stripe.

Structure of the paper. In Section II, we introduce some back-
ground information about MPWAs and details about various
attacks from the literature. The idea of creating attack patterns
from concrete attacks is explained in Section III. In Section IV
we show how the attack patterns we defined can be used
to carry out black-box testing of MPWAs. In Section V,
we provide some details about our prototype implementation.
We discuss the experimental evaluation in Section VI. In
Section VII we discuss the related work and in Section VIII
we discuss the limitations of our approach. We conclude in
Section IX with some final remarks.

II. BACKGROUND
Figure 1 provides pictorial representations of example

MPWAs leveraging SSO, CaaS, and Verification via Email
(VvE) solutions. They all feature (i) a user U, operating a
browser B, who wants to consume a service from a service
provider SP and (ii) a service provider SP that relies on a
trusted-third-party TTP to deliver its services. TLS (and valid
certificates at TTP and SP) are used to securely exchange
messages.

Figure 1a shows the SAML 2.0 SSO protocol [30], where
SP relies on TTP (the Identity Provider, IdP for short) to
authenticate a user U before granting the user access to one
of its resources. The protocol starts (steps 1-2) with U asking
SP for a resource located at URI SP. SP in turn redirects B
to IdP with the authentication request AuthRequest (step 3).
The RelayState field carries URI SP. IdP then challenges B
to provide valid credentials that are entered by U (steps 4-6).
If the authentication succeeds, IdP issues a digitally signed
authentication assertion (AuthAssert) and instructs the user
to sent it (along with the RelayState) to the SP (step 7).
SP checks the assertion and delivers the requested resource
(step 8). A severe man-in-the-middle attack against the SAML-
based SSO for Google Apps was reported [23]. The attack,
due to a deviation from the standard whereby AuthAssert
did not include the identity of SP (for which the assertion was
created), allowed a malicious agent hosting a SP (say SPM)
to reuse AuthAssert to access the resource of the victim U
(say UV) stored at Google, the target SP (say SPT). More in
detail, after a session S1 of the protocol involving UV and
SPM, in which SPM receives the AuthAssert from UV, the
malicious agent starts another session S2 playing the role UM
and mischievously reuses the assertion obtained in S1 in S2

to trick Google (SPT) into believing he is UV.
Figure 1b illustrates a typical MPWA running the PayPal

Payments Standard CaaS protocol [12] where TTP authorizes
U to purchase a product P at SP. Here, TTP is a Payment
Service Provider (PSP) played by PayPal. SP is identified by

2http://www.alexa.com/topsites
3https://sites.google.com/site/mpwaprobe/

2

(a) SAML-based SSO (b) PayPal Payments Standard CaaS (c) Email notification and acknowledgment

Fig. 1: Typical MPWA scenarios

PayPal through a merchant account identifier (PayeeId). U
places an order for purchasing P (steps 1-5). SP sends the
PayeeId, the cost of the product (Cost) and a return URI
(ReturnURI) to TTP by redirecting B (step 6). By interacting
with PSP, U authorizes the payment of the amount to SP (steps
7-9). The transaction identifier (TransactionId) is generated by
PSP and passed to SP by redirecting B to ReturnURI (step 10).
The TransactionId is then submitted by SP to TTP to get
the details of the transaction (steps 11-12). Upon successful
verification of the transaction details, SP sends U the status of
the purchase order (step 13).

A serious vulnerability in the integration of the PayPal
Payments Standard protocol in osCommerce v2.3.1 and Aban-
teCart v1.0.4 that allowed a malicious party to shop for free
was discovered in [32]. The attack is as follows: from a
session S1 of the protocol involving the PSP and the malicious
party controlling both a user (UM) and a SP (SPM), the
malicious party obtains a payee (merchant) identifier. Later, in
the checkout protocol session S2 between UM and the target
SP (SPT), the malicious agent replays the value of PayeeId
obtained in the other session and manages to place an order
for a product in SPT by paying herself (instead of SPT).

While MPWAs for SSO and CaaS scenarios received a
considerable attention (see, e.g., [29], [34], [35], [37], [36],
[39], [32]), there are several other security critical MPWAs that
are in need of close scrutiny. For instance, websites often send
security-sensitive URIs to their users via email for verification
purposes. This scenario occurs very frequently for account
registration: an account activation link is sent via email to
the user who is asked to access her email and click on the
link contained in the email message. An illustration of this
scenario is provided in Figure 1c. Here, TTP is a mailbox
provider MP that guarantees SP that a user U is in control of
a given email address (Email). During registration, U provides
Email to SP (steps 1-5). SP sends the account activation URI
(ActLink) via email to U, when U visits her inbox at MP
he gets access to ActLink (steps 6-12) and by clicking it, the
status of the account activation is loaded in U’s browser (steps
13-15). This scenario is not just limited to account activation
as the same process is followed by many SPs to verify the
authenticity of security-critical operations such as password

reset. For generality, we refer to this scenario as Verification
via Email (in short, VvE).

Quite surprisingly, prominent SPs (e.g., twitter.com) do not
properly perceive and/or manage the risk associated to the
security-sensitive URIs sent via email to their users. It turns out
that some of these URIs give direct access to sensitive services
skipping any authentication step. For instance, when a user
has not signed into twitter for more than 10 days, twitter.com
sends emails to the user about the tweets the user missed
and this email contains security-sensitive URIs that directly
authenticates the user without asking for credentials. Such a
URL can be used by an attacker to silently authenticate a
victim to an attacker controlled twitter account. This attack
is widely known as login CSRF.

A. Attacks
Table I presents ten prominent attacks that were discovered

in literature on SSO- and CaaS-based MPWAs. It includes
the two attacks mentioned above (excluding login CSRF in
twitter), corresponding to #1 for SAML SSO, and #3 for
PayPal Payments Standard. We do not consider here XSS and
XML rewriting attacks (see Section VII for details). Hereafter,
we briefly describe the other attacks.

#2: The attacker hosts SPM to obtain the AccessToken
issued by the TTP Facebook for authenticating UV in SPM.
The very same AccessToken is replayed against SPT to
authenticate as UV.

#4: The attacker completes a transaction T1 at SPT, and
the order id (OrderId), issued by the TTP PayPal for com-
pleting this transaction, is reused by the attacker to complete
another transaction T2 at SPM without payment.

#5: The attacker completes a transaction T1 at SPT and
the payment Token issued by the TTP PayPal for completing
this transaction is reused by the attacker to complete another
transaction T2 at SPM without payment. In [32], the interaction
with PayPal was completely skipped during T2. Here, we focus
on the replay attack strategy used.

#6: The attacker spoofs the AppId of SPT in the
session between UV and SPM to obtain AccessToken of UV.
The very same AccessToken is then replayed by the attacker
in a session between SPT and UM to authenticate as UV at
SPT. In [36], a logic flaw in flash was applied to capture the

3

AccessToken. Here, we focus on the replay attack strategy
used.

#7: Initially, the attacker obtains an authentication
assertion (AuthAssert) from the session between UM and
SPT. Then the attacker forces victim’s browser to submit
AuthAssert to SPT to silently authenticate UV as UM at SPT.

#8: The attacker obtains the value of AuthCode during
the session between UM and SPT. The attacker forces UV’s
browser to submit this value to SPT to silently authenticate
UV as UM at SPT.

#9: The attacker replaces the value of RedirectURI to
a malicious URI (MALICIOUSURI) in the session between UV
and SPM. TTP sends AuthCode of UV to MALICIOUSURI
and the attacker obtains it. The AuthCode is then replayed
in the session between UM and SPT to authenticate as UV at
SPT.

#10: The attacker replaces the value of RedirectURI
to a malicious URI (MALICIOUSURI) in the session between
UV and SPM. TTP sends AccessToken of UV to MALI-
CIOUSURI and the attacker obtains it. The AccessToken
is then replayed in the session between UM and SPT to
authenticate as UV at SPT.

B. Threat Models
The attacks shown in Table I can be discovered by con-

sidering the Web Attacker threat model introduced in [21] and
outlined hereafter according to our context:
Web Attacker. He/She can control a SP (referred to as the
SPM) that is integrated with a TTP. The SPM can subvert
the protocol flow (e.g., by changing the order and value of
the HTTP requests/responses generated from her SP, including
redirection to arbitrary domains). The web attacker can also
operate a browser and communicate with other SPs and TTPs.
Notice also that none of the attacks discussed requires the
threat scenario in which the TTP can be played by the
attacker [31]. We do not consider this threat scenario.

III. FROM ATTACKS TO ATTACK PATTERNS
A close inspection of the attacks in Table I reveals that:
1) they leverage a small number of nominal sessions of

the MPWA under test, namely those played by UV,
UM, SPT, and SPM, which we concisely represent by
(UV, SPT), (UM, SPT), (UV, SPM), (UM, SPM).4

2) they amount to combining sessions obtained by tam-
pering with the messages exchanged in one nominal
session or by replacing some message from one
nominal session into another.

By session we mean any sequence of HTTP requests and
responses corresponding to an execution of the MPWA under
test. Our goal is to identify recipes, called attack patterns, that
specify how nominal sessions can be tampered with and com-
bined to find attacks on MPWAs. We start by identifying and
comparing attack strategies for the attacks in Table I and then
we abstract them into general, i.e. application-independent,
attack patterns.

Attack strategies are built on top of the following three
operations:

4For the sake of simplicity we leave B and the TTP implicit since we identify
the browser with the user. The TTP, according to the threat model considered,
is assumed to be trustworthy.

• REPLAY x FROM S1 IN S2: indicating that the
value of the HTTP element x extracted while exe-
cuting session S1 is replayed into session S2;

• REPLACE x WITH v IN R: denoting that the HTTP
element x (e.g., SID) is replaced with the value v
(e.g., abcd1234) while executing the sequence of
HTTP requests R; and

• REQUEST-OF x FROM R: indicating the extraction
of the HTTP request transporting the HTTP element
x while executing the sequence of HTTP requests R.

For the sake of simplicity, we present in the overall paper the
replay of a single element, but our attack patterns actually
support simultaneous replay of combinations of elements. By
abusing the notation, we use (U, SP) in place of R to indicate
the sequence of HTTP requests underlying the session (U, SP).

The attack strategies corresponding to the attacks described
in Table I are given in Table II.

In attack strategy #1 (and #2), the attacker runs a session
with the victim user UV playing the role of the service provider
SPM and replays AuthAssert (AccessToken, resp.) into a
new session with a target service provider SPT. The attacker
tries thus to impersonate the victim (UV) at SPT.

Attack strategy #3 is analogous to the previous ones, the
difference being that the user role in the first session is played
by the malicious user and the replayed element is PayeeId.
Here the goal of the attacker is to use credits generated by
TTP, in the first session, for SPM on SPT.

Attack strategy #4 (and #5) differs from the previous ones
in that the User and the SP roles are played by UM and SPT
respectively in both sessions. In doing so, the attacker aims to
“gain” something from SPT by re-using the Token (OrderId,
resp.) obtained in a previous session with the same SPT.

Attack strategy #6 is the composition of two basic replay
attack strategies. The element AppId, obtained by running a
session between the victim user UV and the malicious service
provider SPM, is replayed to get the AccessToken which is
then in turn replayed by the attacker UM to authenticate as
UV at SPT. Thus, the result should be the same obtained by
completing a session between UV and SPT.

In attack strategy #7 (and #8), the HTTP request
(cf. REQUEST-OF keyword) transporting AuthAssert
(AuthCode, resp.) in a session played by UM on SPT is
replaced on a sequence comprising a single HTTP request
in which UM sends a HTTP request to SPT (denoted as
[UM SEND req]). Thus, the result should be the same obtained
by completing a session between UM and SPT.

In attack strategy #9 (and #10), the attacker includes a ma-
licious URI (MALICIOUSURI) in the session between UV and
SPT. In doing so, the credential AuthCode (AccessToken,
resp.) is received by the attacker. By replaying this intercepted
AuthCode (AccessToken, resp.) in the session between UM
and SPT, the attacker aims to authenticate as UV in SPT. Thus,
the result should be the same obtained by completing a session
between UV and SPT.

We have distilled the attack strategies in Table II into
a small set of general, i.e. application-independent, attack
patterns which are summarized in Table III. To illustrate,
consider the attack pattern RA1. This pattern has been obtained
from attack strategy #1 (#2) in Table II by abstracting the
element to replay, i.e. AuthAssert (AccessToken, resp.) into
a parameter x.

4

TABLE I: Attacks against security-critical Multi Party Web Applications

Vulnerable MPWA Description of the Attack Attacker’s Goal

1 SPs implementing Google’s SAML
SSO [23, §4]

Replay UV’s AuthAssert for SPM in SPT Authenticate as
UV at SPT

2 SPs implementing OAuth 2.0 implicit
flow-based Facebook SSO [38, §5.2.1]

Replay UV’s AccessToken for SPM in SPT Authenticate as
UV at SPT

3 PayPal Payments Standard implemen-
tation in SPs using osCommerce v2.3.1
or AbanteCart v1.0.4 [32, §IV.A.1]

Replay PayeeId of SPM during transaction T at SPT Complete T at
SPT

4 SPs implementing CaaS solutions of
2Checkout, Chrono-Pay, PSiGate and
Luottokunta (v1.2) [35, §V.A]

Replay OrderId of transaction T1 at SPT during trans-
action T2 at SPT

Complete T2 at
SPT

5 PayPal Express Checkout implementa-
tion in SPs using OpenCart 1.5.3.1 or
TomatoCart 1.1.7 [32, §IV.A.2]

Replay Token of transaction T1 at SPT during transac-
tion T2 at SPT

Complete T2 at
SPT

6 SPs implementing OAuth 2.0 implicit
flow-based Facebook SSO [36, §4.2]

Replay AppId of SPT in the session between UV and
SPM to obtain AccessToken of UV which is then
replayed to SPT.

Authenticate as
UV at SPT

7 developer.mozilla.com (SP)
implementing BrowserID [24, §6.2]

Make UV browser send request to SPT with UM’s
AuthAssert

Authenticate as
UM at SPT

8 CitySearch.com (SP) using Facebook
SSO (OAuth 2.0 Auth. Code Flow)
[25, §V.C]

Make UV browser send request to SPT with UM’s
AuthCode

Authenticate as
UM at SPT

9 Github (TTP) implementing OAuth 2.0
Authorization Code flow-based SSO
[1, Bug 2]

Replace the value of RedirectURI to MALICIOUSURI
in the session between UV and SPM to obtain AuthCode
of UV and replay this AuthCode in the session between
UM and SPT

Authenticate as
UV at SPT

10 SPs implementing Facebook SSO [2] Replace the value of RedirectURI to MALICIOUSURI
in the session between UV and SPM to obtain
AccessToken of UV and replay this AccessToken in
the session between UM and SPT

Authenticate as
UV at SPT

TABLE II: Known Attacks Strategies against MPWAs

Id Attack Strategy

1 REPLAY AuthAssert FROM (UV, SPM) IN (UM, SPT)

2 REPLAY AccessToken FROM (UV, SPM) IN (UM, SPT)

3 REPLAY PayeeId FROM (UM, SPM) IN (UM, SPT)

4 REPLAY OrderId FROM (UM, SPT) IN (UM, SPT)

5 REPLAY Token FROM (UM, SPT) IN (UM, SPT)

6 REPLAY AccessToken FROM S IN (UM, SPT)
where S = REPLAY AppId FROM (UM, SPT) IN (UV, SPM)

7 REPLACE x WITH REQUEST-OF AuthAssert FROM (UM, SPT) IN [UM SEND x]

8 REPLACE x WITH REQUEST-OF AuthCode FROM (UM, SPT) IN [UM SEND x]

9 REPLAY AuthCode FROM S IN (UM, SPT)
where S = REPLACE RedirectURI WITH MALICIOUSURI IN (UV, SPT)

10 REPLAY AccessToken FROM S IN (UM, SPT)
where S = REPLACE RedirectURI WITH MALICIOUSURI IN (UV, SPT)

5

TABLE III: Attack Patterns

Name Attack Strategy Precondition Postcondition

RA1 REPLAY x FROM (UV, SPM) IN (UM, SPT) (TTP-SP ∈ x.flow AND (SU|UU) ∈ x.labels) (UV, SPT)

RA2 REPLAY x FROM (UM, SPM) IN (UM, SPT) (SP-TTP ∈ x.flow AND (SU|AU) ∈ x.labels) (UM, SPT)

RA3 REPLAY x FROM (UM, SPT) IN (UM, SPT) (TTP-SP ∈ x.flow AND SU ∈ x.labels) (UM, SPT)

RA4 REPLAY y FROM S IN (UM, SPT) (SP-TTP ∈ x.flow AND (SU|AU) ∈ x.labels AND (UV, SPT)

where S = REPLAY x FROM (UM, SPT) IN (UV, SPM) TTP-SP ∈ y.flow AND (SU|UU) ∈ y.labels)

LCSRF REPLACE req WITH REQUEST-OF y (TTP-SP ∈ y.flow AND (SU|UU) ∈ y.labels) (UM, SPT)

FROM (UM, SPT) IN [UM SEND req]

RedURI REPLAY y FROM S IN (UM, SPT) (SP-TTP ∈ x.flow AND RURI ∈ x.labels) AND (UM, SPT)

where S = REPLACE x WITH x′ IN (UV, SPT) TTP-SP ∈ y.flow AND (SU|UU) ∈ y.labels)

RA5 REPLAY x FROM (UV, SPT) IN (UM, SPT) (TTP-SP ∈ x.flow AND (SU|UU) ∈ x.labels AND (UV, SPT)

x.location = REQUESTURL)

Legenda: The notation (x|y) ∈ S is used to abbreviate (x ∈ S OR y ∈ S).

The generation of all other attack patterns go along the
same lines. For the creation of the attack pattern LCSRF we
were clearly inspired by attacks #7 and #8. It turns out that this
attack pattern is a bit more general than what it was created for.
In fact, it can uncover general CSRF based on POST requests.
An example of this will be discussed in the illustrative example
of Section IV.

A key step in the execution of an attack pattern is the selec-
tion of the elements to be replaced or replayed. For instance,
when executing RA1 against a given MPWA, the parameter x
can be instantiated with any element occurring in the HTTP
trace resulting from the execution of (UV, SPM). Trying them
all is clearly not acceptable. To tackle the problem, we inspect
the sessions and enrich the elements occurring in the HTTP
trace with syntactic, semantic, location and flow labels whose
meaning is summarized in Figure 2. The preconditions in
Table III determine how these elements are selected for each
pattern.

For instance, since RA1 is a replay attack that tries to re-
play an element from (UV, SPM) to (UM, SPT), it is reasonable
to replay only those elements that flow from TTP to SP, i.e.
data flow label TTP-SP. Indeed, these are the ones that are
likely to comprise specific values that TTP issues for UV. In
addition, it would make little sense to replay elements whose
values do not change over different traces. This is why that
pattern selects only elements in the trace that are tagged either
as session unique (SU) or user unique (UU) (the users are
different among the sessions where the replay takes place).
The precondition of RA2 is analogous to that of RA1, but
since RA2 replays an element from (UM, SPM) to (UM, SPT),
then that element must flow from SP to TTP. Similar reasoning
holds for other attack patterns. Notice that for RedURI pattern
(inspired by attacks #7 and #8), we consider only the URLs
that are chosen by the SPT, but can be changed by the users
(see definition of RURI label in Figure 2).

In Table III, we have also introduced a new attack pattern
named RA5 which is inspired by the “credential leak in
browser history” threat model which is mentioned in the OAuth
2.0 threat model and security considerations document [20].
According to this threat model, UM and UV share the same
browser. In the attack strategy, UM replays (to SPT) the HTTP

elements that are issued by the TTP to SPT for UV. Notice that
in the preconditions it is mentioned that the security critical
parameters which are used in this attack strategy must be
located in the request URL. The request URLs of a browsing
session are likely to be stored in the browser history.

Last, but not least, attack patterns need a way to determine
whether the attack strategy they executed was successful to
detect any attack. The postconditions included in Table III
serve this purpose. The idea is that each one of the four
nominal sessions is associated with a Flag that defines what
determines the successful completion of it. For instance, a
string “Welcome Victim” could be the Flag for the nominal
session (UV, SPT) of a MPWA implementing a SSO solution
(assuming that “Victim” is the name provided by UV at SPT).
The concept of Flag will be further clarified in the next section.
The postcondition is just a program that checks whether a
certain Flag is captured or not while executing the strategy.
A value of the form (U, SP) in the column Postcondition
stands for this program checking for the Flag associated with
(U, SP).

It must be noticed that the definition of postcondition
depends on the specific MPWA under test.

IV. APPROACH
Figure 3 outlines the two processes underlying our ap-

proach. In the first one, executable attack patterns are created,
reviewed, and improved by security experts (see Section IV-A).
The second process enables testers to identify security issues
in their MPWAs. In a nutshell, the testers (e.g., developers of
a MPWA) take advantage of the security knowledge embedded
within the executable attack patterns. We will see that what is
requested to testers is not much more of what they have to do
anyhow in order to test the business logic of their MPWAs.
See Section IV-B for details.

A. Creating, reviewing, and improving Attack Patterns
Working on our attack patterns require web application

security knowledge and implementation skills. Security ex-
perts, in particular those who perform penetration testing
of web applications, have clearly both. Security experts can
thus read and understand attack patterns like those sketched
in Table III. Improving an attack pattern, by changing few

6

Syntactic labels provide type information:a

- URL: a URL, e.g.,redirect uri=http://google.com,
- BLOB: an alphanumeric string with (optionally) special
characters, e.g., code=vrDK7rE4,

- WORD: a string comprised only of alphabetic characters,
e.g., response type=token,

- EMAIL: an email address, e.g., usrname=jdoe@example.
com,

- EMPTY: an empty value, e.g., state=,
- NUMBER: a number, e.g., id=5,
- BOOL: a boolean value, e.g., new=true, and
- UNKNOWN: none of the other syntactic labels match this
string, e.g., #target.

Semantic labels provide information on the role played by the
element within the MPWA:b

- SU (Session Unique): the element is assigned different
values in different sessions.

- UU (User Unique): the element is assigned the same value
in the sessions of the same user.

- AU (App Unique): the element is assigned the same value
in the sessions of a single SP.

- MAND (Mandatory): the element must occur for the proto-
col to complete successfully.

- RURI (Redirect URI): the element must be MAND, it must
be a URL that is passed as a parameter in a request uri and it
is later found in the Location header of a redirection response.

Flow labels represent the data flow properties of an element in
the HTTP traffic. Currently we have two flow labels: TTP-
SP and SP-TTP. Label TTP-SP (SP-TTP, resp.) means
that the corresponding element has been received from TTP
(SP, resp.) and then sent to SP (TTP, resp.). Location labels
denotes the location in the HTTP Message where the element
has been found. The labels that we use are REQUESTURI,
REQUESTHEADER, REQUESTBODY, RESPONSEHEADER and
RESPONSEBODY indicating the location of the element as
request URI, request header, request body, response header
and response body respectively.

aMost of the syntactic labels are borrowed from [36], [32]
bWhile the SU and UU labels are borrowed from [36], the AU and RURI

labels are new. The MAND label generalizes the SEC label introduced in [36],
where it was used to indicate a secret specific to the current session and
necessary for the success of the authentication, while here MAND is not
necessarily secret and SU.

Fig. 2: Syntactic, Semantic, Flow and Location Labels

Fig. 3: Approach

things here and there to e.g., make it a bit more general,
is also a straightforward follow-up step. Creation of attack
patterns asks for some more effort and, more importantly,
for inspiration. As discussed in Section III, with the only
exception of RA5, all attack patterns in Table III have been
inspired by attacks reported in literature. The discovery of a
previously unknown attack not yet covered by our catalog of

attack patterns is, of course, another source of inspiration. In
general, security experts can craft attack patterns capturing
novel attack strategies to explore new types of attacks. This
is the case for attack pattern RA5, which we developed to
explore the “credential leak in browser history” threat model
(e.g., see [20, §4.4.2.2]). This threat model, referred to as the
browser history attacker, is important because browsers can
be shared (e.g., public libraries, internet cafes). To the best of
our knowledge, we are the first to include this threat model in
a black-box security testing approach.

A browser history attacker shares the same browser with
other Users. It is assumed that the user does not always clear
her browser history, but she properly signs out from her login
sessions. The attack pattern RA5 leverages this threat model by
replaying all the elements issued by the TTP that the attacker
can collect from the browser history of the victim. As we
will see in Section VI, by using this threat model, we have
been able to detect two attacks that could not be discovered
automatically using other state-of-the-art black-box security
testing techniques.

B. Security Testing Framework
The different phases of our security testing framework are

described below. Figure 4 shows how these phases concretely
apply on the following illustrative example: The developer
Diana has implemented the Stripe checkout solution in her
web application. She is required to ensure that (r1) the new
feature works as it should and (r2) it does not harm the
security of her web application. Diana feels confident for (r1)
as the Stripe API is documented and there are several demo
implementations available in the Internet that she can use as
references. However, she does not for (r2) as she does not have
a strong security background.

Let us see how our approach empowers people like Diana
(referred to as the tester) to do a systematic usage of the body
of knowledge collected by security experts.

(P1) Configuration. The tester configures the testing envi-
ronment so to be able to collect traces for the four nominal ses-
sions: S1 = (UV, SPT), S2 = (UM, SPT), S3 = (UV, SPM),
and S4 = (UM, SPM). To this end, the tester creates two user
accounts, UV and UM, in her service provider SPT and in
a reference implementation SPM (the purpose of SPM is to
represent the SP controlled by the malicious party). Notice
that, this step does not require a strong security background
and normally does not add-up any additional cost for the tester
that wants to functionally test her MPWA. All major TTPs
provide reference implementations—e.g., [7], [6], [9], [4]—
to foster adoption of their solutions. In case a working official
reference implementation is not available, another SP (running
the same protocol) can be used.

(P2) Recording. In order to enable the testing engine to
automatically collect the necessary HTTP traffic, the tester
records the user actions (UAs for short) corresponding to
sessions S1 to S4. This amount to collecting the actions UV
and UM perform on the browser B while running the protocol
with SPT and SPM. Additionally, for each sequence of UAs,
the tester must also identify a Flag, i.e. a regular expression
representing a pattern in the HTTP traffic which can be used to
determine the successful execution of the user actions. Flags
must be different between each other so to be able to ensure
which session was completed without any ambiguity. Stan-
dard web browser automation technologies such as Selenium

7

The Stripe checkout protocol is illustrated in Figure 4a. It is slightly different than
the PayPal Payments Standard presented in Figure 1b. Hereafter how the Stripe
protocol works. In steps 1-5, the user U visits SP—an e-shopping application—at
URI SP and initiates the checkout of a product item I—the item is identified by
I ID. Upon receiving the checkout request, SP returns a payment form embedded
with a unique identifier (DataKey) issued by Stripe to SP (step 6). The user
provides credit card details (Credentials) to Stripe and DataKey is sent in this
request (steps 7-8). After verifying the validity of Credentials, Stripe returns a
token (Token) which is specific to the SP (steps 9-10). Upon presenting Token and
Secret (a secret credential possessed by each SP integrating the Stripe checkout
solution) and Amt (cost of I), SP withdraws Amt from the user’s credit card
(steps 11-12). Finally, the status of the transaction is sent to the user (step 13). (a) Stripe checkout protocol

(P1) Configuration. Diana uses the SP she implemented as
SPT and the official reference implementations provided by
Stripe [14] as SPM. For each of them, she creates the two user
accounts UV and UM.

(P2) Recording. Table 4b summarizes the UAs and Flags
collected by Diana during the recording phase. Note that the
UAs are obtained from steps 1, 4, and 7 of Figure 4a, while the
Flag is derived from step 13 in Figure 4a (I1-I4 indicate four
different items).

(P3) Inference. An excerpt of the inference results of the
protocol underlying Diana’s implementation of the Stripe
checkout protocol is shown in Table 4c.

(P4) Application of Attack Patterns. The result of applying
each attack pattern of Table III on this example is reported in
Table 4d.

(P5) Reporting. The RA4 and LCSRF attacks are reported to
Diana. Execution details of attack patterns are logged and can
be inspected.

(b) User Actions and Flags of Stripe Checkout

No. Session UAs Flag

S1 (UV, SPT) 1. Visit URI SPT
2. Click Checkout
3. Enter credentials UV

“bought I1”

S2 (UM, SPT) 1. Visit URI SPT
2. Click Checkout
3. Enter credentials UM

“bought I2”

S3 (UV, SPM) 1. Visit URI SPM
2. Click Checkout
3. Enter credentials UV

“Enjoy I3”

S4 (UM, SPM) 1. Visit URI SPM
2. Click Checkout
3. Enter credentials UM

“Enjoy I4”

(c) Excerpt of Inference on Stripe Checkout

Element Data Flow SynLabel SemLabel

DataKey SP-TTP BLOB MAND, AU
Token TTP-SP BLOB MAND, SU

(d) Attack Pattern Application on Stripe Checkout

RA1 REPLAY Token FROM (UV, SPM) IN (UM, SPT). This attack pattern reports no attacks. When the attack test-case reaches step 10 of Figure 4a,
UV’s Token which was actually issued for SPM is replayed by UM against SPT . The TTP Stripe identifies a mismatch between the owner of Secret
and the SP for which Token was issued and returns an error status at step 12.

RA2 REPLAY DataKey FROM (UM, SPM) IN (UM, SPT). No attacks reported. Similar reasons as the previous one: the attacker replays DataKey
belonging to SPM in the checkout session at SPT . Hence the Token returned by TTP cannot be used by SPT to receive a success status at step 12.

RA3 REPLAY Token FROM (UM, SPT) IN (UM, SPT). No attack reported. In Stripe checkout, the validity of a Token expires once it is used. Reuse
of Token returns an error.

RA4 REPLAY DataKey FROM (UM, SPT) IN S where S = REPLAY Token FROM S IN (UM, SPT). This attack pattern reports an attack as there
is no protection mechanism in the Stripe checkout solution that prevents spoofing of the DataKey by another SP. Initially, the attack test case
replays the DataKey from (UM, SPT) into (UV, SPM). When the Token obtained in this session by SPM is replayed into session (UM, SPT),
Stripe does not identify any mismatch and returns a success status at step 12. This allows the attacker UM to impersonate UV and to purchase a
product at SPT .

RA5 This attack strategy is not applicable to Stripe as there are no elements with data flow TTP-SP that also have REQUESTURL as location (basically
none of those elements would be present in the browser history).

LCSRF REPLACE req WITH REQUEST-OF Token FROM (UM, SPT) IN [UM SEND req].
This pattern detects an attack. The test case generated sends a HTTP POST request corresponding to step 10 with an unused Token. This request
alone is enough to complete the protocol and to uncover a CSRF. In our experiment, this was discovered on the demo implementation of Stripe.
Indeed it is not unusual that this kind of protections are missing in the demo systems. We do not know whether any productive MPWAs suffer from
this. Determining this would require specific testing users on the productive system and the buying of real products.

RedURI This pattern is not applicable as there are no URIs that have data flow TTP-SP and semantic property RURI.

Fig. 4: Security Testing Framework on an illustrative example

8

WebDriver [13] and Zest [17] can be used for recording UAs.
Such technology could be extended to allow the tester to define
Flags by simply clicking on the web page elements (e.g., the
payment confirmation form) that identify the completion of
the user actions. Off-the-shelf market tools already implement
this kind of feature to determine the completion of the login
operation.

(P3) Inference. The inference module automatically ex-
ecutes the nominal sessions recorded in the previous phase
and tags the elements in the resulting HTTP traffic with the
labels in Figure 2. We do not exclude that in the future more
information (e.g., inference of the observable workflow of
the MPWA [32]) could be necessary to target more complex
attacks. While we borrow the idea of inferring the syntactic
and semantic properties from [36] and [32], we introduce the
concept of inferring flow labels to make our approach more
automatic (compared to [36]) and efficient (less no. of test
cases for detecting the same attack mentioned in [32]).

The inference results of sessions S1 to S4 are stored in a
data structure named labeled HTTP trace.

(P4) Application of Attack Patterns. Labeled HTTP
traces (output of inference) are used to determine which attack
patterns shall be applied and corresponding attack test cases
are executed against the MPWA.

(P5) Reporting. Attacks (if any) are reported back to the
tester and the tester evaluates the reported attacks.

V. IMPLEMENTATION
We implemented our approach on top of OWASP ZAP

(ZAP, in short). In this way, the two core phases of our
testing engine (cf. P3 and P4 in previous section) are fully
automated and take advantage of ZAP to perform common
operations such as execution of UAs, manipulating HTTP
traffic using proxy rule, regular expression matching over
HTTP traffic, etc. Figure 5 outlines the high-level architecture
of our testing engine. The Tester provides the necessary input
to our Testing Engine that in turns employs OWASP ZAP to
probe the MPWA.5 In particular, the Testing Engine invokes
the API exposed by ZAP to perform the following operations:
• (Execute user actions and collect HTTP traces.)

UAs, expressed as Zest script, can be executed via
the Selenium WebDriver module in ZAP and the
corresponding HTTP traffic can be collected from
ZAP.

• (Proxy rule setting.) Proxy rules can be specified, as
Zest scripts, to mutate HTTP requests and response
passing through the built-in proxy of ZAP.

• (Evaluate Flag.) Execute regular expression-based
pattern matching within the HTTP traffic so to, e.g.,
evaluate whether the Flag is present in the HTTP
traffic.

Hereafter, we detail the two core phases (P3 and P4) of our
Testing Engine that follow the flow depicted in Figure 6. Each
step is tagged by a number to simplify the presentation of the
flow.

1) Inference: With reference to the steps of Figure 6, the
following activities are performed by the inference module
after the tester records (step 1) the four 〈UAs,Flag〉 corre-
sponding to sessions S1, S2, S3, and S4 in (P2).

5The “R” with the small arrow is a short notation of the request-response
channel pair that clarifies who are the requester and the responder of a generic
service.

Fig. 5: Testing Engine Architecture

Trace collection (steps 2-3) The input UAs are executed
and corresponding HTTP traces are collected. The Flags are
used to verify whether the collected traces are complete. We
represent the collected HTTP traces as HT (S1), HT (S2),
HT (S3), and HT (S4). The traces are stored as an array
of 〈request, response, elements〉 triplets. Each triplet com-
prises the HTTP request sent via ZAP to the MPWA, the
corresponding HTTP response, and details about the HTTP
elements exchanged. An excerpt of a trace related to our illus-
trative example (Figure 4a) is depicted in Figure 7 in JSON for-
mat. For simplicity, we present only one entry of the trace array
and only one HTTP element. We assume the reader is familiar
with standard format of the HTTP protocol. Here we focus
on the HTTP elements. For each of them we store the name
(“name”), the value (“value”), its location in the request/re-
sponse (“source”, e.g., source:"request.body" indi-
cates that the element occurs in the request body of the HTTP
request), the associated request URL (“url”), its data flow
patterns, syntactic and semantic labels that are initially empty
and will be inferred in the next activities. For instance, the
element illustrated in Figure 7 is the Token shown in step 10
of Figure 4a.

Syntactic and Semantic Labeling (steps 4-10) The collected
HTTP traces are inspected to infer the syntactic and seman-
tic properties of each HTTP element, reported in Figure 2.
While syntactic labeling is carried out by matching the HTTP
elements against simple regular expressions, semantic labeling
may require (e.g., for MAND) active testing of the MPWA.
For instance, to check whether an element e occurring in
HT (UM, SPT) is to be given the label MAND, the inference
module generates a proxy rule that removes e from the HTTP
requests (step 6). By activating this proxy rule (step 7), the
inference module re-execute the UA corresponding to the
session (UM, SPT) and checks whether the corresponding Flag
is present in the resulting trace (steps 8-9). For instance, the
element Token (see Figure 7) is assigned the syntactic labels
BLOB and the semantic labels SU and MAND.

9

Fig. 6: Testing Engine Flow

Data Flow Labeling (step 11) After syntactic and semantic
labeling, the data flow properties of each MAND element in
the trace is analyzed to identify the data flows (either TTP-
SP or SP-TTP). In order to identify the protocol patterns,
it is necessary to distinguish TTP and SP from the HTTP
trace. We do this by identifying the common domains present
in the HTTP trace of the two different SPs (SPT and SPM)
implementing the same protocol and classifying the messages
from/to these domains as the messages from/to TTP.

The output of the inference phase is the labeled HTTP
traces of sessions S1 to S4 (represented as LHT (S1),
LHT (S2), LHT (S3), and LHT (S4)).

2) Attack Pattern Engine: For the simplicity of explanation,
we represent our attack patterns in the same way as the attack
graph notation introduced in [33]. Each attack pattern has a
Name, the underlying Threat model, Inputs used, the
Goal the attacker (who follows the attack strategy defined in
the pattern) aims to achieve, Preconditions, Actions
and Postconditions. The Inputs to the attack pattern
range over the LHTs (labeled HTTP traces generated by the
inference module), UAs of the nominal sessions, and the cor-

responding Flags. The Goal, Preconditions, Actions
and Postconditions are built on top of the Inputs.
The pattern is applicable if and only if its Preconditions
hold (steps 12-14 of Figure 6). As soon as the pattern
Preconditions hold, the Actions are executed (steps
15-17 of Figure 6). The Actions contain the logic for
generating proxy rules that mimics the attack strategy. The
generated proxy rules are loaded in ZAP and UAs are ex-
ecuted. The execution of UAs generates HTTP requests and
responses. The proxy rules manipulates the matching requests
and responses. As last step of the Actions execution, the
Postconditions are checked. If they hold (step 18 of
Figure 6), an attack report is generated with the configuration
that caused the attack (step 19 of Figure 6).

Example on Attack Pattern for RA1. To illustrate, let us
consider the Replay Attack pattern RA1 reported in Table III.
In Listing 1, we show the pseudo-code describing it.

The Threat model considered is the web attacker. To
evaluate the applicability of the pattern, the output of the
inference phase is sufficient (LHT (UV, SPM)): the attack

10

Fig. 7: HTTP trace with empty labels (an excerpt)

Listing 1: Attack Pattern for RA1

1Name: RA1
2Threat Model: Web Attacker
3Inputs: UAs(UV, SPM) , LHT(UV, SPM) ,
4UAs(UM, SPT) , F l ag (UV, SPT)
5Preconditions: At least one element x in LHT(UV, SPM)
6is such that (TTP-SP ∈ x.flow AND (SU|UU) ∈x.labels)
7Actions:
8For each x such that preconditions hold
9e = e x t r a c t (x , UAs (UV, SPM))
10HTTP logs = r e p l a y (x , e , UAs(UM, SPT))
11Check Postconditions;
12Postconditions:Check F lag (UV, SPT) in HTTP logs
13Re po r t (e , UAs(UM, SPT) , F l ag (UV, SPT))

pattern is executed in case at least one element x has the
proper data flow and semantic label (lines 6-7). For each se-
lected element x (line 9), the function extract (x, UAs(UV,SPM))
(line 10) executes UAs(UV, SPM), returning the value e as-
sociated with x. This value e is then used by the function
replay (x, e , UAs(UM, SPT)) (line 11) to replay the value of e
while executing UAs(UM, SPT), and generating the correspond-
ing HTTP traffic logs (HTTP logs). This logs are finally used
in the Postconditions to check whether Flag(UV, SPT)
occurs. To clarify how the attack pattern engine leverages the
API exposed by ZAP to interact with the built-in proxy, the
pseudo-codes corresponding to the extract and replay functions
are reported in Listing 2 and Listing 3, respectively. In List-
ing 2, at first, the function generate break rule (x) is invoked.
Given an element x, it returns a proxy rule rb which sets a
break point to the execution of the user actions in ZAP, when
an occurrence of x is detected. The proxy rule includes regular
expressions for uniquely identifying an elements in the HTTP
traffic. Then, the ZAP API call load rule ZAP(rule) loads rb in

Listing 2: Extract function

1v a l u e e x t r a c t (i d x , uas UAs){
2rb = g e n e r a t e b r e a k r u l e (x)
3l oad ru le ZAP (rb)
4HTTP logs = execute ZAP (UAs)
5e = e x t r a c t v a l u e (x , HTTP logs)
6c l e a r r u l e s Z A P
7r e t u r n e}

Listing 3: Replay function

1HTTP logs r e p l a y (i d x , v a l u e e , uas UAs){
2r r = g e n e r a t e r e p l a y r u l e (x , e)
3l oad ru le ZAP (r r)
4HTTP logs = execute ZAP (UAs)
5r e t u r n HTTP logs}

ZAP. The ZAP API call execute ZAP(UAs) executes the UAs
in ZAP and returns the generated HTTP logs. The HTTP logs
are taken as input by the function extract value (x, HTTP logs)
extracting from them the value e, associated to x. In Listing 3,
the function generate replay rule (x, e) returns the proxy rule
rr used to detect and replace the value of the element x with e.
Then, the ZAP API call load rule ZAP(rule) loads rr in ZAP.
The ZAP API call execute ZAP(UAs) executes the UAs in ZAP
and returns the generated HTTP logs.

Notice that, besides the functions mentioned above, in
order to help the security expert in defining new attack patterns,
we provide several functions.6

VI. EVALUATION
To test the effectiveness of our approach, we ran our

prototype implementation against a large number of real-
world MPWAs. In Section VI-A, we explain the criteria
based on which we selected our target MPWAs. Next, in
Sections VI-B and VI-C, we explain the attacks we discovered
(both automatically and with manual support) and finally,
in Section VI-D, we provide some information on how we
(responsibly) disclosed our findings to the affected vendors.

A. Target MPWAs
We selected SSO, CaaS and VvE (see Figure 1c) scenarios

as the targets of our experiments. For the SSO scenario, we
adopted the Google dork strategy mentioned in [8] to identify
SPs integrating SSO solutions offered by LinkedIn, Instagram,
PayPal and Facebook. Additionally, we prioritized the Google
dorks results using the Alexa rank of SPs. For the CaaS
scenario, we targeted open-source e-commerce solutions and
publicly available demo SPs integrating 2Checkout and Stripe
checkout solutions. For the VvE scenario, we selected the
websites belonging to the Alexa Global Top 500 category.7

B. Results
We have been able to identify several previously unknown

vulnerabilities and they are reported in Table IV. We have

6The full list of functions that can be used in the definition of attack patterns
is available at https://sites.google.com/site/mpwaprobe.

7www.alexa.com/topsites

11

promptly notified our findings to the flawed SPs and TTPs
and most of them acknowledged our reports and patched
their solutions accordingly. Additional information regarding
the disclosures is given in Section VI-D. Screencasts of the
attacks and the details about our interactions with the vendors
are available in the companion website. Some SPs have not
patched the vulnerabilities yet, and thus in Table IV we have
anonymized their names.

We cluster the attacks into four classes (see last column of
Table IV) according to their similarities with respect to known
attacks. This allows us to show the capability of our approach
to not only detect attacks that are already known in literature,
but also to find similar attacks in MPWAs implementing
different protocols and in different MPWA scenarios.

1) New kind of attack (N): The RA5 pattern that leverages
the browser history attacker threat model discovered an attack
in the integration of the LinkedIn JS API SSO solution
at developer.linkedin.com (#a2). The presence of the non-
expiring user id of the victim in the browser history allows
an attacker to hijack the victim’s account. Another SP website
that appears in the Alexa top 10 e-commerce website category8

is also vulnerable to the same attack (#a1).
2) Attacks to different scenarios (NS): A known kind of

attack has been applied to a different MPWA scenario. By
applying the RA4 attack pattern, we were able to detect
a previously unknown attack in the CaaS scenario (#a3 of
Table IV). It must be noted that RA4 is inspired by an attack in
SSO scenario (see #6 of Table I), and our protocol-independent
approach allowed us to detect it in CaaS scenario. In particular,
we identified the attack in the payment checkout solution
offered by Stripe: the attack allows an attacker to impersonate
a SP by replaying its publicly available API key (DataKey
in Figure 4a) to obtain a payment token (Token in Figure 4a)
from the victim user which is subsequently used to shop at
the impersonated SP’s online shop using the victim’s credit
card. As reported in Table IV, this attack is applicable to all
SPs implementing the Stripe checkout solution [14]. Similarly,
using our login CSRF attack pattern (inspired by attacks in
SSO), we tested the VvE scenario and discovered the following
(#a4):
• login CSRF attack in the account registration process

of open.sap.com and six other SPs (all having Alexa
Global rank less than 500). One of the victim SP is a
popular video-sharing website. The account activation
link (ActLink of Figure 1c) issued by this website
not only activated the account, but also authenticated
the user without asking for credentials. An attacker
can create a fake account that looks similar to the
victim’s account and authenticate the victim to the
fake account (this can be done when victim visits
attacker’s website). As mentioned in [26], this enables
the attacker to keep track of the videos searched by
the victim and use this information to embarrass the
victim.

• twitter.com sends an email to a user if he/she has
not signed into twitter for more than 10 days. The
URLs included in this email directly authenticates the
user without asking for credentials. This is a perfect
launchpad for performing login CSRF attacks. The
authors of [25] discovered a standard form-based login

8www.alexa.com/topsites/category/Top/Business/E-Commerce

CSRF attack against twitter.com and demonstrated
how a login CSRF attack in twitter.com becomes a
login CSRF vulnerability on all of its client websites.

3) Attacks to different protocols (NP): A known kind of
attack is applied to different protocols or implementations
of the same scenario (SSO, CaaS, or VvE). Using the RA1
attack pattern which is inspired by the attacks against Google’s
SAML SSO (cf. #1 of Table I) and Facebook’s OAuth SSO
(cf. #2 of Table I), we discovered a similar issue in the
integration of the LinkedIn JS API SSO solution at INstant [7]
(#a6) and another SP (#a5) which has an Alexa US Rank9

less than 55,000. The vulnerable SPs authenticated the users
based on their email address registered at LinkedIn and not
based on their SP-specific user id.

We discovered login CSRF attacks in two SPs (#a8, both
having Alexa Global Rank less than 1000) integrating the
Instagram SSO solution and another SP (#a9 of Table IV,
with Alexa Australia rank10 less than 4200) integrating the
LinkedIn OAuth 2.0 SSO. The attack pattern that discovered
these attacks is inspired by login CSRF attacks against SPs
integrating the Browser Id SSO and Facebook SSO solutions
(see #7 and #8 of Table I).

Our attack pattern that tampers the redirect URI (inspired
by #9 of Table I) reported that in Pinterest’s implementation
of the Facebook SSO, it is possible to leak the OAuth 2.0
authorization code of the victim to the network attacker by
changing the protocol of the redirect URI from “https” to
“http” (#a10 of Table IV). This attack was possible due to
the presence of a Pinterest authentication server that is not
SSL protected. The same vulnerability was found in all SPs
implementing the “Login with PayPal” SSO solution [5] (#a11
of Table IV). However, in this case it was due to incorrect
validation of the redirect URI by the IdP PayPal.

4) Attacks to new SPs (NA): A known kind of attack
on a specific protocol is applied to new SPs (still using
the same protocol offered by the same TTP). This shows
how our technique can cover the kinds of attacks that were
reported in literature. For instance, in [35], the authors mention
that a logical vulnerability in the 2Checkout integration in
osCommerce v2.3 enables an attacker to reuse the payment
status values of the paid order to bypass payment for future
orders (cf. #4 of Table I). We tested the 2Checkout integration
in the latest version of OpenCart (v2.1.0.1) and noticed that
our RA3 attack pattern discovered a similar attack (#a12 of
Table IV).

C. Manual Findings
In [36], the authors were able to manually discover exploit

opportunities in SSO integrations by analyzing the inference
results of the HTTP traffic. Since our inference module is an
extension of [36], we were also able to manually identify two
attacks. We created one single attack pattern that generalizes
the XSS attack strategy reported in [22, §4]. While writing the
preconditions and the attacker strategy was straightforward,
the postcondition was more challenging. Indeed establishing
whether a XSS payload is successfully executed is a well-
known issue in the automatic security testing community. In
our preliminary experiments, we just relied on the tester to
inspect the results of the pattern and to determine whether

9http://www.alexa.com/topsites/countries/US
10http://www.alexa.com/topsites/countries/AU

12

TABLE IV: Attacks discovered

Attack
Pattern SP TTP (& protocol) Element(s) Class

a1 RA5 AlexaEcommerce-10 LinkedIn JS API SSO UId, Email Na2 RA5 developer.linkedin.com LinkedIn JS API SSO MemberId, AToken

a3 RA4 All SPs Stripe Checkout DataKey, Token
NSa4 LCSRF twitter.com, open.sap.com, Gmail ActLink

other 6 SPs in Alexa Global Top 500

a5 RA1 AlexaUS-55000 LinkedIn JS API SSO Email

NP

a6 RA1 INstant LinkedIn JS API SSO AccessToken
a7 XSS INstant LinkedIn JS API SSO Fname, LName
a8 LCSRF AlexaGlobal-1000a, AlexaGlobal-1000b Log In With Instagram Code
a9 LCSRF AlexaAu-4200 LinkedIn OAuth 2.0 SSO Code
a10 RedURI pinterest.com Facebook SSO Auth.Code Flow RedUri
a11 RedURI All SPs PayPal Log In RedUri

a12 RA3 OpenCart v2.1.0.1 2Checkout Order number, Key NAa13 XSS AlexaGlobal-300 LinkedIn REST API SSO AboutMe

the XSS payload was successfully executed. By doing so,
we uncovered a XSS vulnerability in the INstant website
[7] integrating the LinkedIn JS API SSO. Additionally, we
manually analyzed the data flow between SP and TTP in SPs
integrating LinkedIn REST API SSO to identify tainted data
elements. We replaced the value of tainted elements with XSS
payloads and identified another XSS vulnerability in a SP that
has Alexa Global rank less than 300 (#a13).

D. Disclosures
Pinterest acknowledged our report about the redirect uri

fixation attack and recently they updated their Facebook SSO
implementation. The redirect uri fixation attack against all
SPs integrating the PayPal SSO was due to the deviation
from the OAuth 2.0 standard by PayPal. Even though PayPal
acknowledged our report, we did not win the bug bounty as
another security researcher simultaneously reported the attack.
However, none of the details regarding this attack was publicly
available and we have the screencast of the attack in our
website to support our claim. The attack against online shop-
ping websites integrating Stripe checkout was appreciated by
Stripe and they rewarded us for our findings. LinkedIn updated
the LinkedIn Developers website after receiving our report
about the attack by the browser history attacker. OpenSAP
acknowledged our report about the login CSRF attack in the
account registration process of open.sap.com and fixed the
issue. We reported the XSS attacks we discovered against
the SPs integrating the LinkedIn SSO to the corresponding
vendors. LinkedIn was partially responsible for this attack
as it was possible to create a LinkedIn account and provide
XSS payload as the value of user information fields (e.g., first
name, last name). However, it was the responsibility of SPs
to properly filter and encode the user information received
from LinkedIn. After notifying LinkedIn about the issue, we
noticed that they enforce restrictions in the usage of HTML
characters in input fields. Login CSRF is out of scope for
Twitter’s vulnerability rewards program [19]. Hence, we did
not win a bounty for our report. However, in Section V.F of
[25], it is mentioned that the authors discovered a standard
form-based login CSRF in the login form of twitter.com (which

was already known) and the authors explain how this causes a
login CSRF in SPs integrating Twitter’s SSO solution. Further
details about the disclosures are available at our website.

VII. RELATED WORK
A. Attack pattern-based Black-Box Techniques.

Wang et al. [37] conducted a detailed study of the security
of Cashier-as-a-Service based web stores. Inspired from [37],
Pellegrino et al. [32] proposed the idea of black-box detec-
tion of logical vulnerabilities in e-shopping applications. The
proposed approach creates an abstract model of the application
from the HTTP traffic, identifies the applicability of predefined
behavioral patterns and generate test cases misusing these
patterns. It is interesting to note that the strategy behind all the
exploitable attacks discovered by [32] falls under the category
of replay attacks (precisely those covered by our RA2 and
RA3 attack patterns). We follow a different complementary
approach by neglecting the application model and directly
focusing on replay attacks (among others). We reckon that, in
principle, there could be control-flow attacks that [32] could
detect and we may not (even if there is no experimental
evidence for this). However, it is also true that our attack
on Stripe would require not-so-obvious extensions of [32]:
consider malicious SP as we do and generate online test-cases
to deal with short-lived/one-time tokens.

Somorovsky et al. [34] conducted an in-depth analysis of
14 different SAML frameworks and developed a framework
for testing the security of SAML implementations. The testing
framework automatically generated various SAML attack pat-
terns by permuting the positions of the original and malicious
elements in a SAML assertion. In this paper, we do not
consider the XML signature wrapping attack (XSW in short).
However, we checked the feasibility of extending our approach
to support XSW attacks (see Section VIII for details).

Bozic et al. [28] proposed attack pattern-based combinato-
rial testing for detecting XSS vulnerabilities in web applica-
tions. In order to increase the coverage of our attack patterns,
we applied the concept of combinatorial testing, as mentioned
in Section III.

13

B. Other Black-Box Techniques.
Wang et al. [36] identified many vulnerabilities in the inte-

gration of web SSO systems. The proposed technique analyzes
the HTTP traffic going through the browser, infers syntax and
semantics of the traffic parameters, checks the applicability
of three different attack strategies and provides an overview
to assist a security expert in manually identifying concrete
attacks. In our approach, we adopted their inference concept,
further enhanced it with data flow patterns and automated the
process of attack discovery.

Prithvi et al. [27] proposes a black-box technique for
exposing vulnerabilities in the server-side logic of web applica-
tions by identifying various parameter tampering opportunities
and by generating test cases corresponding to the identified
opportunity. However, this technique required manual effort to
convert these exploit opportunities to actual ones.

Zhou et al. [40] proposed SSOScan, a tool for automat-
ically testing SP websites that implements Facebook SSO.
SSOScan probes the SP website for detecting the presence of
5 vulnerabilities that are specific to Facebook SSO. SSOScan
is useful in conducting large-scale security testing of SPs
implementing the same SSO solution. Even though our input
collection module requires more manual effort compared to
that of SSOScan, the concept of application agnostic attack
patterns extends the generality of our approach by enabling
the testing framework to detect attacks in multiple scenarios
(SSO, CaaS, etc.).

None of the above mentioned black-box techniques pro-
vides experimental evidence of the applicability of the ap-
proach in multiple MPWA scenarios (CaaS, SSO, etc.) as we
do.

C. Other Techniques.
Bai et al. proposed AUTHSCAN [24] for automatically

extracting formal specifications from the implementations of
authentication protocols and verify it using a model checker
to identify vulnerabilities. AUTHSCAN uses sophisticated
techniques such as analyzing the available client-side code in
order to increase the correctness of the automatically extracted
formal model. However, the authors mention that due to
the issue of false positives, manual effort was required for
checking inconsistencies between the actual implementation
and the extracted formal model. This requires the tester to
be knowledgeable on formal specification. Our approach does
not have such a strong requirement and its applicability is not
limited to authentication protocols.

WebSpi [25] is a library for modeling web applications
using a variant of the applied pi-calculus. These formal models
were verified using the ProVerif tool to discover a variety
of attacks in the integration of OAuth-based Single Sign-
On solutions. The authors of [25] also proposed the idea of
automatically obtaining the formal specification of applications
written in a subset of PHP and JavaScript. This work also
emphasized the importance of considering CSRF and open
redirectors while evaluating the security of web-based security
protocols.

Sun et al. [29] proposed to detect logical vulnerabilities
in e-commerce applications through static analysis of the
available program code. Even though the level of automation in
[29] is higher than our approach, we were able to detect similar
attacks without requiring the source-code of the application.

Recently, there have been some efforts [39], [29] to prevent

the exploitation of logical vulnerabilities in the integrations
of CaaS and SSO APIs. However, these techniques requires
changes to be made in the way applications are deployed. Our
approach does not have this requirement as we are focusing
on detecting the attacks rather than preventing them.

VIII. LIMITATIONS AND FUTURE DIRECTIONS
Coverage is a general issue for the black-box security

testing community. Though each of our attack pattern can
state precisely what it is testing, our approach is not an
exception in this respect. Additionally, it can only detect known
types of attacks because our attack patterns are inspired by
known attacks. Creative security experts could craft attack
patterns capturing novel attack strategies to explore new types
of attacks. Two cases can be foreseen here. The new attack
patterns (new recipes) can be built (cooked) on top of the
available preconditions, actions, and postconditions (ingredi-
ents). In this case it should be pretty straightforward for
security experts to cook this new recipe. If new ingredients are
necessary, extensions are needed. These can range from adding
a simple operation on top of OWASP ZAP up to extending the
inference module with e.g., control-flow related inferences and
similar. Another research direction could focus on integrating
fuzzing capabilities within some of our attack patterns. A
clear drawback is that this extension will likely make the
entire approach subject to false positives. A more challenging
research direction could focus on automated generation of
attack patterns. Though this may look as a Holy Grail quest,
there may be reasonable paths to explore. For instance, when
considering replay attacks and the patterns we created for
them, it is clear that the attack search space we are covering
is far from being complete. How many sessions and which
sessions should be considered in the replay attack strategy as
well as which goal that strategy should target remain open
questions. However, attack patterns could be automatically
generated to explore this combinatorial search space.

A few attacks reported in the MPWA literature are not
covered by our attack patterns. In fact, Table I does present
neither XML rewriting attacks [34] nor XSS attacks, e.g., [22,
§4]. For XSS we did not invest too much in that direction
as there are already specialized techniques in literature that
are both protocol- and domain-agnostic. By adding XML
support, new attack patterns can be created to target also XML
rewriting attacks as in [34]. This can be a straightforward
extension of our approach and prototype especially considering
that OWASP ZAP supports Jython [16]. Basically, all Java
libraries can be run within OWASP ZAP so that Java functions
performing transformations on the HTTP traffic (e.g., base64,
XML parsing) can be used in the attack patterns. Our approach
can also be extended to handle postMessage[3]: frames would
be considered as protocol entities and their interactions as
communication events. While there are no conceptual issues
to perform this extension, there is technical obstacle as, at
the moment, OWASP ZAP provides only partial support to
intercept postMessages.

As mentioned in the paper, the approach is not fully
automated because it requires the tester to provide the initial
configurations. The quality of these configurations has a direct
impact on the results. For instance if the Flags are not chosen
properly, our system may report false positives.

Still, as shown, the approach is effective and we plan to
further refine it to overcome these kinds of issues.

14

IX. CONCLUSIONS
We presented an approach for black-box security testing

of MPWAs. The core of our approach is the concept of
application-agnostic attack patterns. These attack patterns are
inspired by the similarities in the attack strategies of the previ-
ously discovered attacks against MPWAs. The implementation
of our approach is based on OWASP ZAP, a widely-used open-
source legacy penetration testing tool. By using our approach,
we have been able to identify serious drawbacks in the SSO
and CaaS solutions offered by LinkedIn, PayPal and Stripe,
previously unknown vulnerabilities in a number of websites
leveraging the SSO solutions offered by Facebook and In-
stagram and automatically generate test cases that reproduce
previously known attacks against vulnerable integration of the
2Checkout service.

ACKNOWLEDGMENT
This work has been partly supported by the EU under grant

317387 SECENTIS (FP7-PEOPLE-2012-ITN).

REFERENCES

[1] Account hijacking by leaking authorization code. http://www.
oauthsecurity.com/.

[2] Covert Redirect. http://oauth.net/advisories/2014-1-covert-redirect/.
[3] HTML5 Web Messaging. http://www.w3.org/TR/webmessaging/

#posting-messages.
[4] Instagram API Console. https://apigee.com/console/instagram.
[5] Integrate Log In with PayPal. https://developer.paypal.com/docs/

integration/direct/identity/log-in-with-paypal/.
[6] Log In with PayPal demo site. https://lipp.ebaystratus.com/

loginwithpaypal-live/.
[7] LogIn to experience INstant. http://instant.linkedinlabs.com/.
[8] The most common oauth2 vulnerability. http://homakov.blogspot.it/

2012/07/saferweb-most-common-oauth2.html.
[9] OAuth 2.0 Playground. https://developers.google.com/

oauthplayground/.
[10] OAuth Security Advisory: 2009.1. http://oauth.net/advisories/2009-1/.
[11] PayPal Express Checkout. https://www.paypal.com/webapps/mpp/

referral/paypal-express-checkout.
[12] PayPal Payments Standard. https://www.paypal.com/webapps/mpp/

paypal-payments-standard.
[13] Selenium WebDriver. http://docs.seleniumhq.org/projects/webdriver/.
[14] Stripe Checkout. https://stripe.com/docs/checkout.
[15] Stripe Wiki. http://en.wikipedia.org/wiki/Stripe %28company%29.
[16] The Jython Project. http://www.jython.org/.
[17] The ZAP Zest Add-on. https://code.google.com/p/zap-extensions/wiki/

AddOn Zest.
[18] Token Fixation in PayPal. http://homakov.blogspot.it/2014/01/

token-fixation-in-paypal.html.
[19] Vulnerability Reawards Program Rules. https://hackerone.com/twitter.
[20] OAuth 2.0 Threat Model and Security Considerations. https://tools.ietf.

org/html/rfc6819#section-4.4.2.2, January 2013.
[21] AKHAWE, D., BARTH, A., LAM, P. E., MITCHELL, J., AND SONG, D.

Towards a formal foundation of web security. CSF ’10, IEEE Computer
Society, pp. 290–304.

[22] ARMANDO, A., CARBONE, R., COMPAGNA, L., CUÉLLAR, J., PEL-
LEGRINO, G., AND SORNIOTTI, A. From Multiple Credentials to
Browser-Based Single Sign-On: Are We More Secure? vol. 354 of IFIP
Advances in Information and Communication Technology. Springer,
2011, pp. 68–79.

[23] ARMANDO, A., CARBONE, R., COMPAGNA, L., CUÉLLAR, J., AND
TOBARRA, L. Formal Analysis of SAML 2.0 Web Browser Single
Sign-On: Breaking the SAML-based Single Sign-On for Google Apps.
In Proc. ACM FMSE (2008), V. Shmatikov, Ed., ACM Press, pp. 1–10.

[24] BAI, G., LEI, J., MENG, G., VENKATRAMAN, S. S., SAXENA, P.,
SUN, J., LIU, Y., AND DONG, J. S. Authscan: Automatic extraction
of web authentication protocols from implementations. In Proceedings
of NDSS’13, San Diego, CA, USA (2013).

[25] BANSAL, C., BHARGAVAN, K., AND MAFFEIS, S. Discovering Con-
crete Attacks on Website Authorization by Formal Analysis. In CSF
2012 IEEE (June 2012), pp. 247–262.

[26] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust Defenses for
Cross-site Request Forgery. In Proceedings of the 15th ACM Conference
on Computer and Communications Security (New York, NY, USA,
2008), CCS ’08, ACM, pp. 75–88.

[27] BISHT, P., HINRICHS, T., SKRUPSKY, N., BOBROWICZ, R., AND
VENKATAKRISHNAN, V. N. Notamper: Automatic blackbox detection
of parameter tampering opportunities in web applications. In Proceed-
ings of the 17th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2010), CCS ’10, ACM, pp. 607–618.

[28] BOZIC, J., SIMOS, D. E., AND WOTAWA, F. Attack pattern-based
combinatorial testing. In Proceedings of the 9th International Workshop
on Automation of Software Test (New York, NY, USA, 2014), AST
2014, ACM, pp. 1–7.

[29] CHEN, E., CHEN, S., QADEER, S., AND WANG, R. Securing mul-
tiparty online services via certification of symbolic transactions. In
Proceedings of the IEEE Symposium on Security and Privacy (Oakland)
(May 2015), IEEE Institute of Electrical and Electronics Engineers.

[30] CONSORTIUM, O. SAML V2.0 Technical Overview. http://wiki.
oasis-open.org/security/Saml2TechOverview, Mar. 2008.

[31] MAINKA, C., MLADENOV, V., AND SCHWENK, J. Do not trust me:
Using malicious idps for analyzing and attacking single sign-on. CoRR
abs/1412.1623 (2014).

[32] PELLEGRINO, G., AND BALZAROTTI, D. Toward black-box detection
of logic flaws in web applications. In NDSS (2014), Internet Society.

[33] PHILLIPS, C., AND SWILER, L. P. A graph-based system for network-
vulnerability analysis. In Proceedings of the 1998 Workshop on New
Security Paradigms (NY, USA, 1998), NSPW ’98, ACM, pp. 71–79.

[34] SOMOROVSKY, J., MAYER, A., SCHWENK, J., KAMPMANN, M., AND
JENSEN, M. On Breaking SAML: Be Whoever You Want to Be. In
Presented as part of the 21st USENIX Security Symposium (USENIX
Security 12) (Bellevue, WA, 2012), USENIX, pp. 397–412.

[35] SUN, F., XU, L., AND SU, Z. Detecting Logic Vulnerabilities in E-
commerce Applications. In NDSS 2014, California, USA, February
23-26, 2013 (2014).

[36] WANG, R., CHEN, S., AND WANG, X. Signing me onto your accounts
through facebook and google: A traffic-guided security study of com-
mercially deployed single-sign-on web services. In Proceedings of the
2012 IEEE Symposium on Security and Privacy (Washington, DC, USA,
2012), SP ’12, IEEE Computer Society, pp. 365–379.

[37] WANG, R., CHEN, S., WANG, X., AND QADEER, S. How to shop
for free online – security analysis of cashier-as-a-service based web
stores. In Proceedings of the 2011 IEEE Symposium on Security
and Privacy (Washington, DC, USA, 2011), SP ’11, IEEE Computer
Society, pp. 465–480.

[38] WANG, R., ZHOU, Y., CHEN, S., QADEER, S., EVANS, D., AND
GUREVICH, Y. Explicating sdks: Uncovering assumptions underlying
secure authentication and authorization. In Proceedings of the 22Nd
USENIX Conference on Security (Berkeley, CA, USA, 2013), SEC’13,
USENIX Association, pp. 399–414.

[39] XING, L., CHEN, Y., WANG, X., AND CHEN, S. InteGuard: Toward
Automatic Protection of Third-Party Web Service Integrations. In NDSS
(February 2013).

[40] ZHOU, Y., AND EVANS, D. SSOScan: Automated Testing of Web
Applications for Single Sign-on Vulnerabilities. In Proceedings of the
23rd USENIX Conference on Security Symposium (CA, USA, 2014),
SEC’14, USENIX Association, pp. 495–510.

15

