
Automatic Forgery of Cryptographically Consistent
Messages to Identify Security Vulnerabilities in

Mobile Services

Chaoshun Zuo
University of Texas at Dallas

cxz153430@utdallas.edu

Wubing Wang
University of Texas at Dallas
wxw132530@utdallas.edu

Rui Wang
AppBugs, Inc

rui@appbugs.co

Zhiqiang Lin
University of Texas at Dallas

zxl111930@utdallas.edu

Abstract—Most mobile apps today require access to remote
services, and many of them also require users to be authenticated
in order to use their services. To ensure the security between the
client app and the remote service, app developers often use cryp-
tographic mechanisms such as encryption (e.g., HTTPS), hashing
(e.g., MD5, SHA1), and signing (e.g., HMAC) to ensure the confi-
dentiality and integrity of the network messages. However, these
cryptographic mechanisms can only protect the communication
security, and server-side checks are still needed because malicious
clients owned by attackers can generate any messages they wish.
As a result, incorrect or missing server side checks can lead to
severe security vulnerabilities including password brute-forcing,
leaked password probing, and security access token hijacking. To
demonstrate such a threat, we present AUTOFORGE, a tool that
can automatically forge valid request messages from the client side
to test whether the server side of an app has ensured the security of
user accounts with sufficient checks. To enable these security tests,
a fundamental challenge lies in how to forge a valid cryptographi-
cally consistent message such that it can be consumed by the server.
We have addressed this challenge with a set of systematic tech-
niques, and applied them to test the server side implementation of
76 popular mobile apps (each of which has over 1,000,000 installs).
Our experimental results show that among these apps, 65 (86%) of
their servers are vulnerable to password brute-forcing attacks, all
(100%) are vulnerable to leaked password probing attacks, and 9
(12%) are vulnerable to Facebook access token hijacking attacks.

I. INTRODUCTION

Today mobile apps are everywhere. They range from simple
information gathering applications, such as for retrieving email,
news, and weather, to feature rich applications, such as for
mobile gaming, online banking/shopping, and blogging/chatting.
In Google Play, which is one of the most popular app stores,
there are over 1.6 million Android apps in total, with more than
50 billion downloads [4]. Meanwhile, the popularity of mobile
apps has continued to rise due to their increasingly prevalent
usage across mobile device (e.g., smartphone and tablet) users.

To save client storage and energy consumption, there is usu-
ally a remote party involved in mobile computing. Specifically,
similar to the traditional desktop web-browser based computing,
a mobile app also often needs to interact with a remote service,
e.g., to retrieve the data of a user’s interest such as the weather
information where the user lives. To provide customized services
and also prevent resource abuse, a typical step to get the access is
through user authentication. Therefore, many mobile apps today
require users to register with the service providers first, and then
use their services after authentication.

As a result, it is crucial to ensure the security of the authentica-
tion process. There are various ways that mobile app developers
have used over the years to achieve this. For instance, they can
encrypt the traffic between the mobile app and the server (e.g.,
through HTTPS), they can hash (e.g., through MD5, SHA1) the
user password before sending to the server for authentication, and
they can also sign (e.g., through HMAC) each message generated
from the mobile app. Correspondingly, on the server side, the
server needs to decrypt each message, validate the hash or the
signature of the message, and reject all the invalid ones.

While it appears to be secure if the server rejects all of
the invalid messages, such security is based on the assumption
that a client cannot forge a valid message. Unfortunately, in
this paper we show that such an assumption is false, and a
client can completely break the message authentication including
cryptographic hashing and signing and generate “legal” messages
for the server to consume. This is because an attacker can
completely control a client app (e.g., running in an emulator),
analyze (i.e., reverse engineer) how a valid message is generated,
and correspondingly generate forged messages.

Consequently, in addition to message decryption, hashing and
signature checking, the server also needs to perform additional
security checks. Otherwise, this can lead to a number of security
vulnerabilities. One such vulnerability is password brute-forcing.
In particular, if the server does not maintain the state of how
many passwords a user has tried while attempting to login within
a certain time window, an attacker would be able to figure out the
user’s password by continuously guessing it. Also, being able to
forge valid request messages would allow attackers to probe the
existence of certain users using leaked usernames and passwords
(due to the common practice of password reuse among many
users [15], [21]). Meanwhile, the lack of a server side security
check can also lead to an access token hijacking attack [2],
[36]. Specifically, an attacker can forge a valid message by

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the paper
was prepared within the scope of employment.
NDSS ’16, 21-24 February 2016, San Diego, CA, USA
Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23146

using a stolen token from other apps to bypass the server side
authentication of the target app (if the server is vulnerable) and
then use the target app’s service. In addition, there could also
exist a SQL injection attack if the server does not perform the
sanitation check of the “legal” messages from the client since an
attacker is now able to forge any messages.

To demonstrate the threat of these security vulnerabilities
at the server side, this paper presents AUTOFORGE, a tool that
can automatically forge cryptographically consistent messages
for the security testing of mobile services when given a mobile
app. It contains a set of black-box techniques including API
hooking, lightweight protocol field reverse engineering, and
request message forgery to automatically generate valid request
messages. At a high level, AUTOFORGE works as follows: given
an app and a few legal inputs (e.g., a username with a correct and
wrong password), it observes how the user input is processed
by only hooking a set of well known cryptographic APIs, and
intercepts the outgoing messages with a man-in-the-middle
network proxy; next, it infers the message fields and their
semantics by diffing the messages and measuring the degree of
the differences; after that, it forges the messages by only mutating
the protocol fields of interest (e.g., username and password) and
generating the cryptographically computed fields through an
out-of-box re-execution (i.e., replay) of the cryptographic APIs.

We have implemented AUTOFORGE, and tested with 76
popular mobile services by running the corresponding mobile
apps. One criteria for selecting which service to test is based on
whether the client apps have been installed over one million times.
We have obtained very encouraging experimental results. Among
the 76 tested services, we found that 65 (86%) servers (including
CNN, Expedia, iHeartRadio, and Walmart) are vulnerable
to password brute-forcing attacks, all (100%) of them are
vulnerable to leaked password probing attacks, and 9 (12%) of
them are vulnerable to Facebook access token hijacking attacks.

In short, we make the following contributions:

• We show that the server side implementation of many
mobile apps lacks sufficient security checks and is vul-
nerable to a number of malicious login attacks including
password brute-forcing, leaked password probing, and
access token hijacking.

• We present a set of lightweight techniques to auto-
matically forge cryptographically consistent messages.
Our technique does not require sophisticated reverse
engineering of the mobile apps, and instead by only
hooking a set of well known cryptographic APIs and
using a lighweight protocol reverse engineering with
an out-of-the-box re-execution of the cryptographic
functions we successfully forge valid request messages.

• We have implemented our techniques in AUTOFORGE,
and applied it to test 76 popular mobile apps (each has
over one million installs), and we have found that the ma-
jority of these app servers are vulnerable to malicious lo-
gin attempts. We have made responsible disclosure and
notified each vulnerable app vendor, and three of them
have patched their service shortly after our notification.

GET /api/rest/app_server.php?sign_method=md5&client=android&ap
p_key=A4H0P4JN&format=json&cv=3.9.0&country_code=US&country=US
A¤cy=USD×tamp=2015-08-05%2003%3A19%3A26&v=1.2&pwd=6
95409430D3127CB158002B92FEC1831&email=testappserveralpha%40gma
il.com&method=vela.user.login&app_secret=4ce19ca8fcd150a4w4pj9
llah24991ut&language=en&sign=94056C9BE079510079D0BF9A372B4E65&
keys=app_key%2Capp_secret%2Cclient%2Ccountry%2Ccountry_code%2C

%2C %2C il%2Cf t%2Cl %2C th d%2C d%2C i 用户名 l h lcurrency%2Ccv%2Cemail%2Cformat%2Clanguage%2Cmethod%2Cpwd%2Csig
n_method%2Ctimestamp%2Cv&sid=ajnrr9b3b2ktg11dcucg66l683 HTTP/1.
1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User-agent: LightInTheBox 3.9.0(Android; 16; 4.1.1; 480_752;
WIFI; generic; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
A t E di i

用户名：testappserveralpha@gmail.com
密码：1234567890

Accept-Encoding: gzip
Cookie: cookie_test=please_accept_for_session;
AKAMAI_FEO_TEST=B; ASRV=A_201505081100

{"result":"fail","code":"1001001","info":[],"error_msg":["Inva
lid email or password (User)"]}

(a) Client Request with a Wrong Password

lid email or password (User)]}

GET /api/rest/app_server.php?sign_method=md5&client=android&ap
p_key=A4H0P4JN&format=json&cv=3.9.0&country_code=US&country=US
A¤cy=USD×tamp=2015-08-05%2003%3A20%3A01&v=1.2&pwd=A
9672D9F5F7414D5B996964A7F07727E&email=testappserverbeta%40gmai
l h d l l i 4 19 8f d150 4 4 j9l

(b) Server Response for the Wrong Password

l.com&method=vela.user.login&app_secret=4ce19ca8fcd150a4w4pj9l
lah24991ut&language=en&sign=D2A173BEB8F169DD1A81CA8D59AD2C69&k
eys=app_key%2Capp_secret%2Cclient%2Ccountry%2Ccountry_code%2Cc
urrency%2Ccv%2Cemail%2Cformat%2Clanguage%2Cmethod%2Cpwd%2Csign
_method%2Ctimestamp%2Cv&sid=ajnrr9b3b2ktg11dcucg66l683 HTTP/1.
1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User-agent: LightInTheBox 3.9.0(Android; 16; 4.1.1; 480_752;

i)
用户名：testappserverbeta@gmail.com

WIFI; generic; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
Accept-Encoding: gzip
Cookie: cookie_test=please_accept_for_session;
AKAMAI_FEO_TEST=B; ASRV=A_201505081100

(c) Client Request with a Correct Password

pp @g
密码：ThisIsPWD!

{"result":"success","code":"1000000","info":{"sessionkey":"6a6
ac7ff985eb08524e89392ec1addcb"},"error_msg":[]}

(d) Server Response for the Correct Password

Fig. 1. Network Traces of the Login Attempts of miniinthebox App.

II. BACKGROUND AND OVERVIEW

The goal of this paper is to develop techniques that can auto-
matically forge valid cryptographically consistent client request
messages, and apply them to find the security vulnerabilities
(such as password brute-forcing) in the server side. In this section,
we provide the necessary background and give an overview of
how we achieve this goal. We first start from a running example
(§II-A) to illustrate the challenges and present our observation
(§II-B), and then we define our research problem and overview
our system (§II-C).

A. A Running Example

To understand our problem better, Fig. 1 illustrates
the network traces gathered from the popular Android
app miniinthebox. It is an online shopping app which
has one-to-five million installs according to Google Play.
As shown in Fig. 1, we performed two tests: the first
is to enter a wrong password (1234567890) for user
testappserveralpha@gmail.com, and the client
request message and the server response message are
illustrated in Fig. 1(a) and (b); the other is to enter a
correct password (ThisIsPWD!) for a different user,
testappserverbeta@gmail.com, whose request and

2

response messages are illustrated in Fig. 1(c) and (d), respectively.
We can notice from the trace that this app uses the plain-text
HTTP protocol, and there are many app-defined protocol fields
in this login request message such as sign_method, client,
app_key, format, pwd, email, sign, keys, and sid, etc.

Among these protocol fields, a few of them are of special
interest to us such as pwd, email, and sign if we aim to
perform a password guessing test. That is, we can keep mutating
a user password (from 1234567890 to some other dictionary
guided guesses) and test whether the server accepts or rejects
our password. However, we can notice that the user entered
password 1234567890 has been hashed (or encrypted) to value
695409430D3127CB158002B92FEC1831. Meanwhile,
there is a sign field that is a cryptographic signature of the client
request message, and the server will verify whether the sign
field is correct or not. Also, we can notice that the value of the
sign field is significantly different in the two request messages.

Therefore, in order to generate valid request messages, we
just need to recognize the message fields of interest to us such
as the pwd and sign field, mutate the corresponding field (e.g.,
the pwd), and generate valid cryptographically consistent fields
(e.g., sign) of the request message. In addition, we also need
to monitor the response of the server packets, to terminate the
test once we find a correct password.

B. Observation

Challenges. From our running example, we can notice that
there are a number of challenges in order to perform server
side security testing:

• Recognizing the protocol fields. Typically a network
message consists of a number of fields; some of them
are standard protocol fields (e.g., GET), while some are
user defined. While it might be easier to identify the
standard fields for well-known protocols, it will be much
more challenging to recognize the user defined fields,
especially considering the fact that different developers
can name a field differently (e.g., they might use either
pwd, passwd, or password for a password field).

• Identifying the cryptographic functions. To
encrypt or hash a password, different apps can
also use different cryptographic functions (e.g.,
MD5,SHA-1,AES,DES, etc.). Similarly, to generate
the signature of a protocol message, apps can also
use different message authentication code (MAC)
generation functions (e.g., HMAC,HMAC-SHA-1). We
need to identify the functions that are used by the
testing app, so as to regenerate the corresponding
password, hash, or signature. Meanwhile, an app might
use their own private cryptographic functions, though
this is not encouraged.

• Deciding when to terminate. We cannot perform a
brute-force test forever, and we must terminate at some
point. While it might appear to be very simple by parsing
the response messages from the server (e.g., by looking
at the success or fail string as shown in Figure 1
(b) and (d)), such an approach would be too app-specific
since different apps can use different strings and differ-
ent encoding to represent a succeeded or failed attempt.

• Generating the valid request messages. Having rec-
ognized the message fields of our interest, we also have
to finally generate the new valid messages for our testing.
While it might be possible to dynamically instrument
the app and use an in-context argument substitution of
the cryptographic APIs to generate the message, or just
fuzz the graphic user interface to generate the “legal”
messages, these approaches appear to be more expensive
or lack flexibility (e.g., requiring recognizing and
controlling of the user interface, rolling back the state of
the login event, or only substituting user visible fields)
and instead we would like to have an out-of-the-box
approach to forge any “legal” messages as we wish.

Key Insights and Solutions. At a high level, we can notice
that essentially we are performing protocol reverse engineering
in that we have to recognize the protocol fields, understand the
request and response messages (to a certain degree), and generate
valid messages with cryptographically computed fields. While
we could adopt many of the existing protocol reverse engineering
techniques (e.g., [10], [14], [22], [25], [39]) to analyze at the
instruction level how a message is generated, such an approach
also appears to be more expensive since it tracks the data depen-
dency at the instruction level. Having analyzed the executions
of a number of apps manually, we have obtained the following
insights to address those technical challenges discussed above:

• Inferring the message fields with diffed input. Al-
though it is challenging to recognize each field in a
given message, we realize that we need to infer only a
few of them based on our interests (e.g., only the email,
pwd, and sign fields in our running example). Since
we control the app execution, we can feed the app with
controlled input such as a correct password and a wrong
password. By observing the request message differences,
we can identify the diffed fields. The fields of our
interest must be within the diffed fields. For instance,
as shown in Fig. 1(a) and (c), there are only four
diffed fields: timestamp, pwd, email, and sign,
and we can quickly narrow them down by using request
message diffing.

• Dynamically hooking well-known cryptographic
APIs. While an app can use different types of
cryptographic functions for encryption, hashing and
signing of a message, there are only a limited number of
them. Meanwhile, even though there might be some user
defined cryptographic functions, these apps would be
rare because of the “never-implement-your-own-crypto”
practice [30]. Therefore, we can dynamically hook the
well-known cryptographic APIs used by an app, extract
their arguments (usually the user typed input such as
the password or the fields that need to be digitally
digested or signed will appear in the arguments) and
return values that allow us to change only the arguments
of our interest. Then, we can replay the execution of
the cryptographic APIs with the new arguments to
re-generate new valid messages.

• Labeling response message with controlled input.
Similar to how we infer the message fields through
diffed input, we can also infer the type of the response

3

5 6 6

Input0

API Hooking Server

Request Message ForgeryAPI Traces

Request
Message0

R t

Request
Messageg0

R t

Request
Messagei

2 31

2

5

2

6 6

Message Field Inference 3

App

Input1

Response Message Labeling
Response
Message

Request
Message1

Request
Message1

44

Emulator Man‐in‐the‐Middle ProxyFig. 2. An Overview of How Our AUTOFORGE Works.

message (namely, the success or failure login messages
sent by the server) with controlled input diffing. More
specifically, since we control the app, we can test the
app with a correct password and treat the response
message as a black box without looking at any of
its content by assigning it a success tag; similarly,
we can send a wrong password, and assign a failure
tag for the corresponding response message. There
will be some other types of messages, such as a
too-many-login-attempts warning message sent from
the server, but we can just assign all of these messages
with an other tag regardless of their contents.

• Out-of-the-box re-execution of the cryptographic
functions. An interesting observation for cryptographic
function is that their algorithms are well-known, and
different implementations by different programming
languages such as Java, C, or Python would produce
the same output when given the same input. Therefore,
we can perform an out-of-the-box re-execution of the
cryptographic functions to forge the desired request
messages by feeding them with the corresponding
arguments.

C. Overview

Problem Statement. After describing the challenges and our
observations, next we would like to formally define our problem.
It can be summarized as follows: Given an app and traced
input messages, the goal of AUTOFORGE is to automatically
generate a new input message with mutated fields that satisfy
the cryptographic constraints of the messages in an efficient and
black-box manner.

Scope and Assumptions. In this paper, we focus on testing the
mobile services of Android apps. As to-be-demonstrated, we
only need the knowledge of publicly available cryptographic
APIs (e.g., the parameters and return values) as well as the
capability of hooking these functions, and we assume these
information is available. In addition, since our goal is to generate
valid client side request messages, we need to reverse engineer
the protocol fields. In this paper, we focus on the apps that use
text-based protocols including HTTP/HTTPS because we can
directly identify the protocol fields based on text differences.

Interestingly, many mobile apps in Android do use
HTTP/HTTPS protocols, which makes it trivial in identifying

the protocol fields through input message diffing. Note that for
HTTPS, we can intercept their traffic and decrypt it by using a
man-in-the-middle proxy. This is because we can easily install
a self-signed root certificate in our testing Android device, and
intercept and decrypt the traffic in a network proxy.

Overview. We have designed a set of systematic techniques in
our prototype AUTOFORGE. As illustrated in Fig. 2, there are
four key components inside AUTOFORGE: one is located inside
an Android emulator, and the other three are located inside a
man-in-the-middle (MitM) proxy. There are in total six major
steps in order to forge a cryptographically consistent request
message:

• Step ¶. To test a given app, we first need to provide
the necessary input that generates the desired message
fields. For instance, to test whether a service is
vulnerable to password brute-forcing attack, we need
to enter two testing inputs1: a testing username with the
correct password for this user, and a testing username
with a wrong password for this user, respectively. To
have the correct password, we need to register with
the service first. Therefore, Step ¶ is the only manual
step that involves human intervention. All other steps
in AUTOFORGE are automatically executed.

• Step ·. Once the app gets loaded and the input is fed
to the app, our first component, API Hooking, will in-
terpose the white-listed cryptographic APIs. Whenever
one of the APIs is executed, we retrieve its input and
output of this API from its arguments and return values
based on the specification of the API. Such information
is saved in a trace log. Later we will traverse the log file
to generate the new request message in Step º. Mean-
while, the execution of the app inside our emulator will
automatically generate a request message, which will be
fed to our second component, Message Field Inference,
and the copy of this message will also be sent to the
server at Step ¸ or right after the execution of Step ·.

• Step ¸. By aligning the two request messages and
diffing each message field, our Message Field Inference
directly identifies the diffed message fields. Then it

1Strictly speaking, we need four inputs for the password brute-force testing.
For space reasons we do not show them completely in Fig. 2. We will explain
why we need four inputs in §III-C.

4

measures the similarity of the values between each
diffed field. Based on the degree of differences, it
identifies the cryptographically computed fields. A
few other fields can also be inferred based on the
pattern of the string (as we focus on text protocols),
e.g. the timestamp field, which has a certain string
inside such as the date of the test. The request message
generated at Step · is sent to the server if it has not
been sent yet. Note that the execution of Step ¸ can
be performed offline, and the system does not need to
wait until this step is finished to execute Step ¹.

• Step ¹. The server sends a response message to the
client, which is intercepted by our third component,
Response Message Labeling. Based on the type
of the message (e.g., the correct password, or a
wrong password) we sent to the server, it assigns a
corresponding label (or tag) to the response message
(e.g., a success tag or a failure tag). We will
also compare the tag for all later response messages
(generated after Step ») to decide whether we should
continue executing Step » based on the nature of the
security testing we perform (e.g., repeatedly guessing
a password until we get a success response).

• Step º. Having assigned the tag for the two
initial response messages, and meanwhile having
collected the input and output traces for each of the
executed cryptographic APIs, our last component,
Request Message Forgery, re-executes these executed
cryptographic functions with the mutated input and
finally generates the valid request message by replacing
the corresponding field in the initial request message.

• Step ». The newly generated request message is sent
to the server, and its response will be intercepted by our
MitM proxy. Then we continue the execution to Step ¹.

III. DETAILED DESIGN

In this section, we present the detailed design of the four
key components of AUTOFORGE, based on the order of their
execution.

A. API Hooking

The first component of AUTOFORGE hooks the well-defined
cryptographic functions to intercept their arguments and return
values such that we can replay their execution to produce the
desired cryptographically consistent fields. The Android SDK
provides a set of cryptographic Java APIs. Based on their
specification as well as our manual analysis with a number of
apps, we have obtained 61 commonly used cryptographic APIs.
Their prototypes are presented in Table I. Most apps2 directly use
them to encrypt input data (with the crypto.cipher class),
generate a hash (with the security.MessageDigest class)
or sign the input by generating a message authentication code
(i.e., with the crypto.Mac class). Based on our manual
analysis with a number of apps, we find these APIs are usually
used in the following way:

2There are apps that use native code and we need to hook the native code APIs
in this case.

• Encryption. To encrypt a message, an Android
app first needs to initialize a cryptographic
key class (e.g., by calling new DesKeySpec
and SecretKeyFactory.getInstance
to generate the DES keys), and then it calls
cipher.getInstance with parameters such
as “DES/CBC/PKCS5Padding” to get a cipher
instance, and then init this cipher with the
necessary parameters (e.g., the initialized keys). Then,
app developers have to give the input message (using a
byte array) to this cipher for encryption. There are
two ways to do that: the first is to call API doFinal to
pass the input and get output as cipher text; the second
way is to call API update to pass the input, and then
call API doFinal to produce the cipher text.

• Hashing. Obtaining a digest of a message (without us-
ing any keys) is achieved by using MessageDigest
(e.g., md5, or sha1). In this case, the app calls
MessageDigest.getInstancewith string “MD5”
as argument to get a MD5 MessageDigest instance, and
then it calls the update method to add the message
that needs to be digested. Finally, it calls digest to
produce the desired hashing result.

• Signing. To sign a message (ensuring both integrity
and authenticity), a message authentication code (i.e.,
Mac) is used. Similar to encryption, the app also has to
generate the corresponding keys first (e.g., by calling
new SecretKeySpec with string “HmacSHA1”),
get a Mac instance by calling Mac.getInstance
with a string (e.g., “HmacSHA1”), and then initialize the
Mac with the generated key. Next, it calls doFinal,
which takes the to be hashed messages as input and
finally produces the hashed messages as output. It could
also first call update to add the message, and then call
doFinal with an empty argument.

Therefore, we hook each of the APIs (the handler and the
function name) described in Table I, and log their arguments
and return values. We log the arguments of these APIs right
before their execution, and their return values as well as updated
arguments if there are any right after their execution. A sample
of our log is presented in Fig. 3.

B. Message Field Inference

Next, we need to identify the protocol fields of our interest
in the request message. We divide this problem into two
sub-problems: (1) message field identification that splits the
messages into a set of fields, and (2) field semantic inference
that infers the meaning of the identified fields. The outcome of
this step is the fields we aim to mutate, such as pwd and sign
in our running example.

1) Message Field Identification. Since we only need to
substitute a few fields in our security testing, there is no need to
identify all protocol fields. In addition, since we control the input
to the testing app, we can observe the field differences in the
request messages if we feed different inputs to the app. Based
on these two insights, we can identify the fields that get changed
by aligning the two request messages that are generated with

5

TABLE I. THE LIST OF THE HOOKED CRYPTOGRAPHIC APIS, AND ITS PARAMETERS AND RETURN VALUES.

Return Value API name Parameters
SecretKeySpec javax.crypto.spec.SecretKeySpec.SecretKeySpec<init> (byte[] key, String algorithm)
SecretKeySpec javax.crypto.spec.SecretKeySpec.SecretKeySpec<init> (byte[] key, int offset, int len, String algorithm)
DESedeKeySpec javax.crypto.spec.DESedeKeySpec.DESedeKeySpec<init> (byte[] key)
DESedeKeySpec javax.crypto.spec.DESedeKeySpec.DESedeKeySpec<init> (byte[] key, int offset)
DESKeySpec javax.crypto.spec.DESKeySpec.DESKeySpec<init> (byte[] key)
DESKeySpec javax.crypto.spec.DESKeySpec.DESKeySpec<init> (byte[] key, int offset)
X509EncodedKeySpec java.security.spec.X509EncodedKeySpec<init> (byte[])
SecretKeyFactory javax.crypto.SecretKeyFactory.getInstance (String algorithm)
SecretKeyFactory javax.crypto.SecretKeyFactory.getInstance (String algorithm, String provider)
SecretKeyFactory javax.crypto.SecretKeyFactory.getInstance (String algorithm, Provider provider)
SecretKey javax.crypto.SecretKeyFactory.generateSecret (KeySpec keySpec)
IvParameterSpec javax.crypto.spec.IvParameterSpec.IvParameterSpec (byte[] iv)
KeyFactory java.security.KeyFactory.getInstance (String algorithm)
KeyFactory java.security.KeyFactory.getInstance (String algorithm, String provider)
KeyFactory java.security.KeyFactory.getInstance (String algorithm, Provider provider)
PublicKey java.security.KeyFactory.generatePublic (KeySpec keySpec)
Mac javax.crypto.Mac.getInstance (String algorithm)
Mac javax.crypto.Mac.getInstance (String algorithm, String provider)
Mac javax.crypto.Mac.getInstance (String algorithm, Provider provider)
void javax.crypto.Mac.init (Key key)
void javax.crypto.Mac.init (Key key, AlgorithmParameterSpec params)
void javax.crypto.Mac.update (byte input)
void javax.crypto.Mac.update (byte[] input)
void javax.crypto.Mac.update (ByteBuffer input)
void javax.crypto.Mac.update (byte[] input, int offset, int len)
byte[] javax.crypto.Mac.doFinal ()
byte[] javax.crypto.Mac.doFinal (byte[] input)
void javax.crypto.Mac.doFinal (byte[] output, int outOffset)
MessageDigest java.security.MessageDigest.getInstance (String algorithm)
MessageDigest java.security.MessageDigest.getInstance (String algorithm, String provider)
MessageDigest java.security.MessageDigest.getInstance (String algorithm, Provider provider)
void java.security.MessageDigest.update (byte input)
void java.security.MessageDigest.update (byte[] input)
void java.security.MessageDigest.update (ByteBuffer input)
void java.security.MessageDigest.update (byte[] input, int offset, int len)
byte[] java.security.MessageDigest.digest ()
byte[] java.security.MessageDigest.digest (byte[] input)
int java.security.MessageDigest.digest (byte[] buf, int offset, int len)
Cipher javax.crypto.Cipher.getInstance (String transformation)
Cipher javax.crypto.Cipher.getInstance (String transformation, String provider)
Cipher javax.crypto.Cipher.getInstance (String transformation, Provider provider)
void javax.crypto.Cipher.init (int opmod,Key key)
void javax.crypto.Cipher.init (int opmod,Certificate certificate)
void javax.crypto.Cipher.init (int opmod,Key key,SecureRandom random)
void javax.crypto.Cipher.init (int opmod,Certificate certificate,SecureRandom random)
void javax.crypto.Cipher.init (int opmod,Key key,AlgorithmParameterSpec params)
void javax.crypto.Cipher.init (int opmod,Key key,AlgorithmParameterSpec params,SecureRandom random)
void javax.crypto.Cipher.init (int opmod,Key key,AlgorithmParameters params)
void javax.crypto.Cipher.init (int opmod,Key key,AlgorithmParameters params,SecureRandom random)
byte[] javax.crypto.Cipher.update (byte[] input)
byte[] javax.crypto.Cipher.update (byte[] input,int inputOffset,int inputLen)
int javax.crypto.Cipher.update (ByteBuffer input, ByteBuffer output)
int javax.crypto.Cipher.update (byte[] input,int inputOffset,int inputLen,byte[] output)
int javax.crypto.Cipher.update (byte[] input,int inputOffset,int inputLen,byte[] output,int outputOffset)
byte[] javax.crypto.Cipher.doFinal ()
byte[] javax.crypto.Cipher.doFinal (byte[] input)
int javax.crypto.Cipher.doFinal (byte[] output, int outputOffset)
byte[] javax.crypto.Cipher.doFinal (byte[] input,int inputOffset,int inputLen)
int javax.crypto.Cipher.doFinal (byte[] input,int inputOffset,int inputLen,byte[] output)
int javax.crypto.Cipher.doFinal (byte[] input,int inputOffset,int inputLen,byte[] output,int outputOffset)
int javax.crypto.Cipher.doFinal (ByteBuffer input, ByteBuffer output)

the two controlled inputs. As shown in our running example, if
we directly align (with a global optimal matching) the messages
in Fig. 1(a) and (c), we immediately identify four fields (three
are of special interest to us).

Then, the next question is how to find the two desired request
messages for the alignment. A straightforward approach would
be to align all request messages generated from the start of
the app to the moment right after we trigger the login event.
Presumably the two executions will share almost the same
execution path except those code that handles input differences.
While we can take such an approach, we realize that we can use
a slightly better way to get the desired messages within only one
execution of the app. In particular, after we load the app to test the

login attempt, we can first enter a wrong password, and then enter
a correct password. We would then just need to align the two most
recently generated request messages. Though this is a heuristic
approach, it works well in practice, and in our all testing apps we
directly identify the two request messages desired for alignment.

After that, we compare the two request messages by us-
ing a pairwise string sequence alignment algorithm, namely
the Needleman-Wunsch algorithm [27]. It uses dynamic pro-
gramming and can achieve an optimal global matching, which
perfectly fits our goal. Meanwhile, this algorithm has been used
in the Protocol Informatics (PI) [8] project, and showed great
promise for text based protocol field inference. Therefore, we
just integrate this algorithm by following how PI uses it.

6

TABLE II. THE LEVENSHTEIN SIMILARITY RATIO OF THE
DIFFED-FIELDS.

Field Name String0 vs. String1 LSR

2015-08-05%2003%3A19%3A26
timestamp

2015-08-05%2003%3A20%3A01
0.84

testappserveralpha%40gmail.com
email

testappserverbeta%40gmail.com
0.88

695409430D3127CB158002B92FEC1831
pwd

A9672D9F5F7414D5B996964A7F07727E
0.34

94056C9BE079510079D0BF9A372B4E65
sign

D2A173BEB8F169DD1A81CA8D59AD2C69
0.28

2) Field Semantic Inference. Having identified the diffed fields,
we then infer their meanings. There are mainly three sources that
lead to the field differences: (1) system data such as timestamp,
(2) user input, and (3) the cryptographic computation. We
present the following three strategies to infer their meanings:

• Pattern Matching. System data such as timestamp
usually has patterns, and we can then use the pre-defined
patterns to match them. For instance, if we locate a
date sub-string such as 2015-08-05 in the two diffed
fields, then it is highly likely that this is a timestamp
field, as illustrated in our running example.

• Content Matching. Since we control the user input and
some user input would not get changed, such as the
username, then we directly search the diffed fields for
the data we entered. In such a way, we can precisely
locate the field that directly uses the user input, such as
the email field in our running example.

• Degree of Differences. By measuring the degree of
the similarities between the two diffed fields, we can
easily identify the cryptographically computed fields.
In our design, we use the Wagner-Fischer algorithm
[35], which computes the Levenshtein distance, or
minimum number of edits needed to transform one
string into the other, between two fields. We determine
whether a field is cryptographically computed if the
Levenshtein similarity ratio (LSR) is below 0.5, as
shown in Table II for our running example where we
can easily locate the pwd and sign fields.

Note that field semantic inference is an optional step. In the
worst case, AUTOFORGE can brute-force try each diffed field
(e.g., there are only 4 fields in our running example that needs
the brute-force trial) as crypto-field, system-field, or user-input
field, to finally generate the desired request messages. With field
semantic inference, the benefit is that it can significantly narrow
down and even directly pinpoint the field of our interest.

C. Response Message Labeling

Since we aim to test the server behavior, we have to also
monitor the server responses to decide when to stop. It would
be very challenging to label a response message by parsing
its contents since different apps can use different encodings.
Fortunately, we find that we can actually treat the response
message as a black box. Specifically, in our password login test,
because the app is under our control, we can send the server two
more messages in addition to the two initial request messages
we sent earlier. Back to our running example, we have already
collected two response messages: a wrong password response

message (Fig. 1(b)), and a correct password response message
(Fig. 1(d)). Then we can send another pair of messages, one with
a wrong password and the other with the correct password, and
use the following algorithm to label the response messages:

• If both the wrong (or correct) password response mes-
sages are content identical to the previously observed
ones, then we directly use the corresponding entire
message as a signature to classify whether it is a wrong
(or correct) password response message.

• Otherwise, we align the two same type of response mes-
sages (i.e., two correct password response messages, or
the two wrong password response messages) using again
the Needleman-Wunsch algorithm [27], but we keep the
common substring (instead of the diffed substring we
used in Step ¸) and use it as a signature to represent a
correct password response message or a wrong password
response message.

After we have acquired the signatures for the correct password
response and wrong password response, next we keep sending
the server a login request with mutated passwords for a given
user. However, for ethical reasons, we would not keep sending
a large volume of mutated request messages to the server, and
in our experiment we set the maximum number of messages we
could send to the server as N + 1. During this testing window,
we could observe three types of messages sent from the server:

• Correct password. We may break a user’s password
within N + 1 guesses, and the server will send a
successful login response. Based on the already obtained
signature of the correct password response, we identify
this case.

• Wrong password. Given the very small amount of
guesses, we likely cannot break a password. Therefore,
most of the time, server will send a wrong password
response message. Similarly to how we identify the
correct password response message, we identify this
case based on the already obtained wrong password
signature.

• Unrecognized response message. In addition to the
two correct or wrong password responses, we could also
encounter other types of response messages that do not
hold any signatures we observed before. The response
for these messages could be something indicating we
have exceeded a limited number of login attempts, or
just an error message. Therefore, if we observe these
unrecognized response messages, we terminate the test
and conclude that the server is not vulnerable.

Note that there is also a caveat: if the server is not vulnerable,
it may keep sending a wrong password response message even
though we have guessed a correct password (in fact we did find
two such servers in our experiment). Therefore, if we receive N
wrong password responses, we will send a correct password for
our testing user in the last request message. If the server blocks
(by sending some other unrecognized response or the wrong
password response), we conclude the server is not vulnerable.

7

Algorithm 1 Parsing the Cryptographic API trace and Tracking
the Backward Data Dependency
1: Input: Log: the API execution log file; v0: the value of the identified output field; u0:

user entered input;
2: procedure APITRACEPARSING(Log, v0, u0)
3: V ← v0
4: H ← ∅, R← ∅
5: i← 0
6: while !feof(Log) do
7: <handle.fname, input, output>← fread (Log)
8: APIi←<handle.fname, input, output>
9: i← i + 1

10: while i! = 0 do
11: i← i− 1
12: if APIi.output ∈ V then
13: V ← V \ {APIi.output}
14: PUSHARGANDFUNNAME(APIi, V,H , u0)
15: if APIi.output ∈ H then
16: H ← H \ {APIi.output}
17: PUSHARGANDFUNNAME(APIi, V,H , u0)
18: if empty(V) and empty(H) then
19: break
20: if !empty(V) or !empty(H) then
21: return false
22: else
23: return true
24: procedure PUSHARGANDFUNNAME(API , V , H , u0)
25: if String (API.input) then
26: vd ← GetDiffedArgValueFromTwoTraces()
27: if uo ∈ API.input or vd ∈ API.input then
28: PUSH (ARG, Substitute(vd, u0, API.input)))
29: V ← V ∪ vd
30: else
31: PUSH (ARG, String(API.input))
32: else
33: if CONST (API.input) then
34: PUSH (ARG, CONST(API.input))
35: else
36: V ← V ∪ API.input
37: PUSH (ARG-t, API.input.temp)
38: if !empty(API.handle) then
39: H ← H ∪ API.handle
40: PUSH (FNAME, API.handle.fname)

D. Request Message Forgery

Having collected the API traces and identified the fields
of our interest, we are then ready to forge the desired request
messages for our security testing. For each diffed-field identified
by our Message Field Inference, we substitute them either
based on their inferred meaning or trying each of them one-
by-one in a brute force way to forge a request message. The
forgery of the request message is guided by the traced message
as well as the traces of the cryptographic APIs. Since there
are two types of fields, non-cryptographically computed fields
and cryptographically computed fields, we use the following
strategies to forge their values.

1) Non-cryptographically computed fields. For non-
cryptographically computed user input fields such as email
we forge the value of this field without changing its content
(because we aim to test whether we can guess the password for
a given user). For system related fields, such as timestamp,
we configure AUTOFORGE to slightly change it based on the
pattern observed in the traced request messages.

2) Cryptographically computed fields. The core problem AUT-
OFORGE aims to solve is to generate the cryptographically
computed fields with mutated input. Once we have collected
the traces of the cryptographic functions, including their input

and output, all that we need to do is to replay the execution of
these functions with the input we modified. Since our replay is
performed at the network proxy layer, we just need to re-execute
the cryptographic functions of our interest with the corresponding
parameters. To identify those functions and their arguments,
we perform backward slicing atop cryptographic API traces
to identify the involved arguments and return values, and then
replay their execution using the corresponding alternative (e.g.,
Python) implementation of these APIs. A detailed algorithm on
how we parse the API trace and perform the slicing to identify
the involved cryptographic functions is presented in Algorithm 1.

Specifically, given a log file of the API trace (LOG), the
value v0 of the identified cryptographically computed field
(e.g., “D2A173BEB8F169DD1A81CA8D59AD2C69” in our
running example), and the user input u0 (e.g., “ThisIsPWD”
and “testappserverbeta@gmail.com”), we invoke the
APITRACEPARSING procedure to identify the functions that we
need to replay along with the corresponding arguments. Since
we start from the last executed API that generates the value of
our interest and use the backward slicing to identify the replayed
function, we use a stack structure (we call function state tracking
stack) to store these functions and their arguments (as shown in
line 27, line 30, line 33, and line 36 in Algorithm 1) and then we
just need to pop these arguments and invoke the corresponding
alternative implementation of these cryptographic APIs to finally
produce the desired output.

Our backward slicing tracks two types of data dependen-
cies: (1) function handler dependencies (stored in set H),
and (2) return value and argument dependencies (stored in
set V). As shown in line 12, starting from the return value
of the last executed cryptographic API (e.g., the function
0x53595658.digest illustrated in Fig. 3), if the return
value belongs to V , then this function is of our interest; we
therefore remove this return value from V (line 13) and push
its argument and function name into our state tracking stack by
calling procedure PUSHARGANDFUNNAME (line 14).

Inside PUSHARGANDFUNNAME procedure, we will first
check its argument; if it is a string (line 25), then we again
use the Needleman-Wunsch algorithm [27] to check whether
its argument contains any diffed-value of our interest (e.g.,
A9672D9F5F7414D5B996964A7F07727E as shown in
Fig. 3) by aligning the two corresponding arguments from
the two traced API files, and storing the diffed value into vd
if there is any (line 26). Next, we further check if the user
input u0 (e.g., testappserverbeta@gmail.com) is in
this argument, or if there is any diffed value vd. If so, we
will replace u0 with either user specified input and meanwhile
substitute the argument with a temporary variable that stores
the vd (line 28); we also track which function generates vd
by keeping it in V (line 29). Otherwise, we directly push this
string argument (e.g., the “DES” string that is the argument
of SecretKeyFactory.getInstance in Fig. 3) on the
stack (line 31). If the argument is not a string (line 32-37),
then we check whether it is a constant (e.g., the value 1 in
0x536b7670.init’s argument). If so, we push this constant
on the stack; otherwise, we will track which function generates
this argument by adding it into data dependence set V , and push
another temporary variable that will store the value generated
by the dependent function. If the handler of this function is not
empty (line 38), we track the dependence of the handler (line 39).

8

DESKeySpec(0x536b299c) = 0x536b2970
*0x536b299c: "4ce19ca8fcd150a4w4pj9llah24991ut"

S tK F t tI t (0 107f2) 0 535f66f4SecretKeyFactory.getInstance(0x107f2) = 0x535f66f4
*0x107f2: "DES"

0x535f66f4.generateSecret(0x536b2970) = 0x265

Cipher.getInstance(0x57f18baf) = 0x536b7670
*0x57f18baf: "DES/CBC/PKCS5Padding"

IvParameterSpec(0x535686bc) = 0x536c838c
*0x535686bc: \x00\x00\x00\x00\x00\x00\x00\x00

0x536b7670.init(1, 0x265, 0x536c838c)

0x536b7670.doFinal(0x536df6ec) = 0x536fc960
*0x536df6ec: "ThisIsPWD!"0x536df6ec: ThisIsPWD!
*0x536fc960: \xa9\x67\x2d\x9f\x5f\x74\x14\xd5\xb9\x96\x96\x4a

\x7f\x07\x72\x7e

MessageDigest:getInstance(0x1297e) = 0x53595658
*0x1297e: {"MD5"}

0x53595658.digest(0x536c9234) = 0x5357d2100 53595658.d gest(0 536c9 3) 0 535 d 0
*0x536c9234: "app_keyA4H0P4JNapp_secret4ce19ca8fcd150a4w4pj9l

lah4991utclientandroidcountryUSAcountry_codeUScurrencyUSDcv3.9.0e
mailtestappserverbeta@gmail.comformatjsonlanguageenmethodvela.use
r.loginpwdA9672D9F5F7414D5B996964A7F07727Esign_methodmd5timestamp
2015-08-05 03:20:01v1.2"

*0x5357d210: \xd2\xa1\x73\xbe\xb8\xf1\x69\xdd\x1a\x81\xca\x8d
\x59\xad\x2c\x69

Fig. 3. Crypto API traces and the illustration of their arguments and return
value dependencies of the miniinthebox App. Note that *addr denotes the
content stored in that addr.

Note that after we iterate the API traces, both V and H should
be empty (line 20); otherwise there is something wrong and we
will output that we cannot perform the replay.

After we have built the stack that tracks how the crypto-
graphic functions should be executed, we then pop the arguments
and the function names from the stack, and then invoke the
corresponding alternative implementation of these cryptographic
functions to finally generate the desired field output. After that,
we replace the corresponding field in one of the request messages
we traced (e.g, Request Message0) to finally forge the
desired request messages.

IV. EVALUATION

We have implemented AUTOFORGE using both Java and
Python. We implemented our API Hooking in Java atop the
Xposed Framework [6], which provides convenient ways to
find and hook a given API (findAndHookMethod) and
can intercept the point before (beforeHookedMethod) or
after (afterHookedMethod) execution of the API. This
implementation consists of 1, 200 lines of Java code. The rest
of the components of AUTOFORGE are implemented using
Python with 4, 500 lines of our own code. It is worth noting
that we implemented the Message Field Inference atop the
Protocol Informatics [8] project, which is an open source Python
implementation of the Needleman-Wunsch algorithm [27], and
we just integrated this code based on our needs. Also, we did
not have to implement the algorithm to compute the Levenshtein
similarity ratio of two strings [35] because Python already has an
implementation for this algorithm. Meanwhile, we implemented
our MitM proxy atop the Burp Suite [1] using a Python plugin.

There will be many security applications enabled by
AUTOFORGE. In this section, we evaluate how we apply it to test

the vulnerable app servers. In particular, we show how we tested
whether an app server is vulnerable to password brute-forcing
attacks in §IV-B, leaked username and password probing attacks
in §IV-C, and the Facebook access token hijacking attack
in §IV-D. Our procedure for setting up our experiments is
presented in §IV-A.

A. Experiment Setup

Collecting the Mobile Apps for Testing. To test the app servers,
we needed to first download and install the corresponding apps
in our emulator. We crawled the apps from the official Google
Play market. We crawled over 20, 000 apps within a three month
time window. Since we have to manually register with each
service in order to test whether their servers are vulnerable, we
cannot test all of them and therefore we instead focused on the
most popular apps. We considered an app to be a most popular
app if it has been installed more than one million times. We
queried each app to check its number of installs on Google Play;
we found 320 apps falling into this category.

Among these 320 apps, not all of them use cryptographic
functions to encrypt, hash, or sign the request messages, so we
had to filter them. It would be tedious to manually go through
each app one-by-one to check whether it uses cryptographic
functions. We therefore developed a simple dynamic analysis
tool based on Monkey [5] to decide whether we should filter
an app. Specifically, we invoked the am command provided by
Monkey to run the app and stop executing it after 20 seconds. If
we observed any cryptographic functions (listed in Table I) get
called, we kept this app for further testing.

After filtering the non-encryption, non-hashing and non-
signing apps, we then had 105 apps to test. But still, we were
not sure whether each app contained a user login interface since
our test primarily concerns the security of user authentication.
Currently, there is no automatic tool to recognize this, and
therefore we had to go through each of them. After manually
running the 105 apps one-by-one, we found that 15 of them do
not contain a user login interface, and 14 of them do not use
HTTP/HTTPS protocols. Therefore, we filtered these apps out
and eventually had only 76 apps tested by AUTOFORGE. The
name of the tested app, its version, the category, and the number
of installs, and the protocol (HTTP or HTTPS) are presented in
Table V in Appendix. Also, we observed that 54 out of 76 (71%)
apps in our data set use the HTTPS protocol.

Other Settings. We used Genymotion [3] as our Android
emulator. Our host machine runs Ubuntu 12.04 with 8G memory
and Intel Core2 Duo CPU 2.53GHz, and our Android emulator
is version 4.2.2 with 2G memory. Meanwhile, the parameter N
is set to be 20.

B. Password Brute-forcing Testing

We have illustrated through our running example how to
break a user’s password by iteratively mutating her password
until we hit a correct one. We have applied this methodology to
test these 76 potential vulnerable app services. To launch our test,
we first registered two legal accounts in the corresponding servers
and sent four request messages (a wrong and correct password
pair for each registered user) and then mutating the password

9

TABLE III. THE DETAILED PASSWORD BRUTE-FORCING TESTING RESULT FOR 23 APP SERVERS BASED ON THE APP CATEGORY.

Step ¶ Step · Step ¸ Step ¹ Step º

Category App Package Name

#I
np

ut
M

sg

#T
ra

ce
d

A
PI

E
nc

ry
pt

io
n?

H
as

hi
ng

?

Si
gn

in
g?

#D
iff

ed
Fi

el
d

#S
ys

Fi
el

d

#I
np

ut
Fi

el
d

#C
ry

pt
oF

ie
ld

E
qu

al
R

es
po

ns
e?

Sy
sF

ie
ld

O
nl

y?

#S
lic

ed
A

PI

#R
eq

ue
st

Vu
ln

er
ab

le
?

Books & Reference com.sirma.mobile.bible.android 4 146 X 7 7 1 0 0 1 7 X 1 21 X
Business com.sahibinden 4 89 X X 7 4 1 2 1 7 X 15 21 X
Casual me.pou.app 4 169 7 X 7 2 0 1 1 7 X 7 21 X
Comics jp.ebookjapan.ebireader 4 60 7 X 7 3 1 1 1 7 X 7 21 X
Communication com.browan.freeppmobile.android 4 40 X X 7 2 0 1 1 7 X 18 21 X
Education com.dictionary.flashcards 4 35 7 7 X 5 2 2 1 7 X 9 21 X
Entertainment com.imdb.mobile 4 428 7 7 X 4 1 2 1 7 X 7 21 7
Finance com.netgate 4 505 X 7 7 3 1 0 2 7 X 28 6 7
Health & Fitness com.fatsecret.android 4 41 7 X 7 2 0 1 1 7 X 7 21 X
Lifestyle com.cookpad.android.activities 4 342 7 7 X 4 1 2 1 7 X 1 21 X
Media & Video com.youku.phone 4 771 7 X 7 4 1 1 2 7 X 7 5 7
Medical com.aranoah.healthkart.plus 4 321 7 7 7 2 0 2 0 7 X 0 21 X
Music & Audio com.slacker.radio 4 751 7 7 7 2 0 2 0 7 7 0 21 X
News & Magazines com.cnn.mobile.android.phone 4 213 7 7 7 2 0 2 0 7 7 0 21 X
Photography com.picsart.studio 4 1292 7 7 7 2 0 2 0 7 X 0 21 X
Productivity com.autodesk.autocadws 4 153 7 7 7 2 0 2 0 7 7 0 21 X
Shopping com.biggu.shopsavvy 4 771 7 X 7 3 0 2 1 7 X 8 21 X
Social com.tumblr 4 172 7 7 X 5 2 2 1 7 X 7 21 X
Sports com.espn.score_center 4 385 7 7 7 2 0 2 0 7 7 0 21 X
Tools com.sohu.inputmethod.sogou 4 195 7 X 7 2 0 1 1 7 X 7 3 7
Transportation taxi.android.client 4 35 7 X 7 1 0 0 1 7 X 8 21 X
Travel & Local com.expedia.bookings 4 649 7 7 7 2 0 2 0 7 7 0 21 X
Weather disasterAlert.PDC 4 58 7 7 7 2 0 2 0 7 X 0 21 X

for one of the registered legal users. It would be overwhelming
to show all of the testing results for these 76 apps in a single
table. We thus classify the apps based on their categories listed
in Google Play, select the apps that have the highest number of
installs in each category, and present their experimental results in
Table III. In total, these apps can be classified into 23 categories.
Therefore, there are only 23 app server testing results in Table III,
and the results for the rest of the app servers are presented in
Table VI in Appendix.

Specifically, we present the category of the app in the first
column of Table III, followed by the app name. Since the
execution of AUTOFORGE involves four key components, we
present the internal results of these components in each key step
from the 3rd column to the last column. In particular, the number
of inputs needed in Step ¶ is presented in the 3rd column. We
can see that they all require 4 inputs. The 4th column reports how
many APIs we traced, and the 5th to 7th column reports whether
this app uses encryption, hashing, or signing, respectively, based
on the execution of our API Hooking in Step ·; The number of
diffed fields by our Message Field Inference (Step ¸) is reported
in the 8th column, and we also report the number of identified
system data fields (e.g., the timestamp), user input data fields
(e.g., username), and cryptographic computed fields from the 9th
to the 11th columns. Whether our Response Message Labeling
(Step ¹) observes identical response messages is reported in
the 12th column; if they are not identical, whether the difference
only comes from the system field is reported in the 13th column.
Finally, we report the number of sliced APIs by our Request
Message Generation (Step º) in the 14th column, the number
of the request messages we sent in the 15th column, and whether
the app server is vulnerable in the last column.

For these 23 apps’ servers, we can observe from Table III
that 19 (83%) are vulnerable to password brute force attacks
with our limited 20 guesses. Note that if we also include the
result (presented in Table VI) for the rest of the app servers,

in total, we find 65 apps’ servers (86%) are vulnerable to
this attack type. Among the 4 non vulnerable apps servers
in Table III, 3 of their servers (e.g., com.netgate) will
directly return “Unrecognized response message” after 3, 5 or
6 request messages; but com.imdb.mobile will not return
such message, and we only found it is not vulnerable after the
21st request message.From this table, we can also observe that
we need four input messages for the test. Meanwhile, there are
tens to several hundreds of cryptographic APIs executed for these
tested apps. We have examined the traces and found that part of
reason is because some of the apps heavily use cryptographic
functions for integrity checking of the retrieved data such as
the images before login. There are 65% of the apps that use
encryption, hashing, or signing to protect the authentication
request message; 17% use encryption, 39% use hashing, and 17%
use signing. There are 8 apps (35%) whose #sliced API column
is 0, as they do not involve any cryptographic computation in
the authentication request message, but they are included in our
test because their earlier communications involve cryptographic
computation. Also, we can notice that there are just a few diffed
fields (ranged from 1 to 5) in the request message. Among these
diffed fields, 8 apps have one or two system fields (such as
timestamp), 20 apps have user input (e.g., username), and 15 apps
have cryptographically computed fields in the authentication
request message. Meanwhile, all of their response messages are
not identical, but 18 of them (78%) only contain system field
differences in the response message (some other differences
include cookies, etc).

Regarding how long AUTOFORGE takes to test each app
server, we note that the most time consuming part is the user
registration and the manual user login process. Usually these
processes took two to five minutes. The rest of the execution of
AUTOFORGE only took less than 10 seconds each to automati-
cally finish password brute-force testing under the setting of N
being 20.

10

C. Leaked Username and Password Probing Testing

The second test we performed is the leaked data probing
attack. Being able to generate valid request messages, we would
then be able to test whether a leaked username and password
exists in the remote mobile service. Through a one time forgery,
an attacker can easily find a victim’s username and password
without performing any brute-force guessing because of the
password reuse practice among many users [15], [21].

In the past several years, there were hundreds of millions of
leaked passwords and user accounts [7], [31], and such a leaked
data probing attack can be easily launched. While the server can
limit the origin of the request message (e.g., by limiting a given
IP address with only limited number of login attempts, though
this is not a good practice as it might cause trouble for some
campus networks when a network proxy is used), if an attacker
performs distributed testing, such an attack is very challenging
to prevent.

To determine whether a service provider is vulnerable to
this leaked data probing attack, we performed a simple test. In
particular, for ethical reasons, we did not use any of the leaked
database accounts, and instead we registered 19 more users in the
services we tested (in addition to the two users we registered in
password brute-forcing testing). Starting from a single IP address,
we keep mutating the the username and wrong password pair
in the first 20 request messages, with the 21st request message
containing a correct username and password. If the server allows
the login, then it means the server is vulnerable to this type of
attack. Without any surprise, the server side of all the 76 apps
we tested are vulnerable to this leaked data probing attack.

D. Facebook Access Token Hijacking Testing

The third test we performed is to identify the access token
hijacking vulnerability in the mobile service. Today, many
mobile apps support users logging in to their services with the
users’ Facebook, Google, Microsoft, or Twitter accounts. For
instance, among the tested 76 apps, we found that 36 of them
(47%) support Facebook Login, 28 (37%) support Google Login,
5 (7%) support Twitter Login. For a proof-of-concept, we focus
on the most popular Facebook Login and demonstrate how to
launch an access token hijacking vulnerability test against it.
Typically, when a user connects to the app service with Facebook
Login, the app will obtain an access token for that particular
user and that app, and this token can provide a temporary, secure
access to Facebook APIs such as querying user’s information
stored in Facebook. However, this per-app issued access token is
portable, and other apps can use the same user’s Facebook token
to access the user’s private information if the app service does
not check the origin of the token. This attack has been described
as an access token misuse attack [36] or access token hijacking
attack [2].

To perform this test, essentially what we want is to log in to
a vulnerable app server by using the Facebook access token that
is issued to other apps. Therefore, we just need to substitute an
access token (stolen) from other apps, and test whether the app
server still allows access and returns a user’s private data (again,
the fundamental reason is because the app server mistakenly
uses the token as authentication [36]). While we could apply
our Message Field Inference to infer the fields of our interest
in the authentication request messages, we notice that many

<script type="text/javascript">window.location.href="fbconnect:
\/\/success#granted_scopes=email\u00252Ccontact_email\u00252Cp
ublic_profile&denied_scopes=&access_token=CAAUbRqhb6ggBAEtOE6v
cAjUGqfficRiVUj2WZALM330EBSqDIo98pFEVBgiIhVCgbHihV3qmjgDKr5eDG
BqrhVotkGWQUbaIcXTpxAOHGPskQVLsuJ59PrysHMz6zzAZCx4GAovndOmZAb4
EIXAlLSlvaZCGVyevED2B53FOpAtrPdlaDmh67wKjj56lO7epMtT69ZAXYCQZD
ZD&expires_in=5140807";</script>

GET /v2.2/me?access_token=CAAUbRqhb6ggBAEtOE6vcAjUGqfficRiVUj2
WZALM330EBSqDIo98pFEVBgiIhVCgbHihV3qmjgDKr5eDGBqrhVotkGWQUbaIc
XTpxAOHGPskQVLsuJ59PrysHMz6zzAZCx4GAovndOmZAb4EIXAlLSlvaZCGVye
vED2B53FOpAtrPdlaDmh67wKjj56lO7epMtT69ZAXYCQZDZD&format=json&s
dk=android HTTP/1.1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==

(a) Facebook Confirmation Message

x newrelic id: XAYCV1ZADgsAUFRTBQ==
User-Agent: FBAndroidSDK.3.20.0
Content-Type: multipart/form-data; boundary=3i2ndDfv2rTHiSisAb
ouNdArYfORhtTPEefj3q2f
Accept-Language: en_US
Host: graph.facebook.com
Connection: Keep-Alive
Accept-Encoding: gzip

{"id":"109829469364819","email":"testappserver2016\u0040gmail.
com","first_name":"Fndss","gender":"male","last_name":"Lndss",
"link":"https:\/\/www.facebook.com\/app_scoped_user_id\/109829
469364819\/","locale":"en_US","name":"Fndss Lndss","timezone":
-5,"updated_time":"2015-08-17T03:27:04+0000","verified":false}

(b) Client Request Message to Facebook

POST /api/v1/socials/FACEBOOK/put?timestamp=2015-08-17%2001%3A
16%3A23&sid=0bcd1165dbcc44718b95f35c6ee70fb9&v=1.1&client=andr
oid&accessToken=CAAUbRqhb6ggBAEtOE6vcAjUGqfficRiVUj2WZALM330EB
SqDIo98pFEVBgiIhVCgbHihV3qmjgDKr5eDGBqrhVotkGWQUbaIcXTpxAOHGPs
kQVLsuJ59PrysHMz6zzAZCx4GAovndOmZAb4EIXAlLSlvaZCGVyevED2B53FOp

(c) Facebook Response Message

AtrPdlaDmh67wKjj56lO7epMtT69ZAXYCQZDZD&app_key=A4H0P4JN&langua
ge=en&cv=3.10.0¤cy=USD&sign=6992022E02F34E7ED5CD6CF19795
BD86&providerUserId=109829469364819&email=testappserver2016%40
gmail.com HTTP/1.1
x-newrelic-id: XAYCV1ZADgsAUFRTBQ==
User-agent: LightInTheBox 3.10.0(Android; 17; 4.2.2; 480_752;
WIFI; generic; I9100; en)
Host: api.miniinthebox.com
Connection: Keep-Alive
Accept-Encoding: gzip
Content-Type: application/x-www-form-urlencoded
Cookie: AKAMAI_FEO_TEST=B; ASRV=A_201505081100; cookie_test=pl
ease_accept_for_session; JSESSIONID=1qfesxjfnhxas1s1sbde9uut9n
Content-Length: 0

(d) Client Authentication Request Message to App Server

Fig. 4. Access Token Hijacking Attack with miniinthebox App.

of the fields of our interest can be inferred directly from the
response messages sent by Facebook. For instance, as shown
in Fig. 4(d), we need to recognize five fields: timestamp,
accessToken, sign, providerUserId, and email.
Among them, accessToken and providerUserId can be
inferred directly from the Facebook response message, which is
well defined by the Facebook API.

In particular, during the Facebook Login process, Facebook
will send a response message as shown in Fig. 4(a) from
https://m.facebook.com/v2.2/dialog/oauth/, and we can directly
parse this response message to get the access_token
(because the format is defined by Facebook and every app
follows it). Next, a client app will use this token and send
a request message to the Facebook server to query for more
information about this user; an example of this request message
is shown in Fig. 4(b). Next, Facebook will reply to the client with
the queried information such as id,email,first_name, etc.,
about this user. This response message, as shown in Fig. 4(c) also
has well-defined fields by Facebook, and we just need to parse
them to retrieve the information of our interest such as the id
field. We can notice from Fig. 4(d) that id, access_token,

11

https://m.facebook.com/v2.2/dialog/oauth/

TABLE IV. THE DETAILED RESULT ON THE SECURITY TOKEN SUBSTITUTION TESTING

Step ¶ Step · Step ¸ Step ¹ Step º

App Package Name

#I
np

ut
M

sg

#T
ra

ce
d

A
PI

E
nc

ry
pt

io
n?

H
as

hi
ng

?

Si
gn

in
g?

#D
iff

ed
Fi

el
d

#S
ys

Fi
el

d

#I
np

ut
Fi

el
d

#C
ry

pt
oF

ie
ld

A
cc

es
sT

ok
en

?

ID
?

E
m

ai
l?

E
qu

al
R

es
on

se
?

Sy
sF

ie
ld

O
nl

y?

#S
lic

ed
A

PI

#R
eq

ue
st

Vu
ln

er
ab

le
?

anews.com 2 144 7 7 7 1 0 1 0 X 7 7 7 7 0 1 7
com.ad60.songza 2 185 7 7 7 1 0 1 0 X 7 7 7 X 0 1 7

com.askfm 2 790 7 7 X 2 0 1 1 X 7 7 7 X 7 1 7
com.biggu.shopsavvy 2 611 7 X 7 2 0 1 1 X 7 7 7 X 7 1 X

com.bukalapak.android 2 521 7 7 7 2 0 2 0 X X 7 7 X 0 1 X
com.careerjet.android 2 231 7 7 7 1 0 1 0 X 7 7 7 X 0 1 X

com.clearchannel.iheartradio.controller 2 800 7 7 7 1 0 1 0 7 X 7 7 7 0 1 7
com.dictionary.flashcards 2 72 7 7 7 2 0 2 0 X X X 7 X 0 1 7

com.espn.score_center 2 567 7 7 7 2 0 2 0 X X X 7 7 0 1 7
com.expedia.bookings 2 1090 7 7 7 2 0 2 0 X X 7 7 7 0 1 7

com.geeksoft.wps 2 364 7 X 7 2 0 1 1 7 X 7 7 X 7 1 7
com.imdb.mobile 2 947 7 7 X 3 1 1 1 X 7 7 7 X 7 1 7

com.jabong.android 2 719 7 7 7 2 0 2 0 X X X 7 X 0 1 7
com.mediafire.android 2 858 7 X 7 2 0 1 1 X 7 7 7 X 8 1 X

com.meucarrinho 2 332 7 X 7 4 2 1 1 X 7 7 7 X 7 1 X
com.miniinthebox.android 2 572 7 X 7 5 2 2 1 X X X 7 X 7 1 X

com.mobilesrepublic.appygamer 2 204 7 7 7 1 0 1 0 7 X X 7 X 0 1 7
com.mobilesrepublic.appygeek 2 929 7 7 7 1 0 1 0 7 X X 7 X 0 1 7

com.myfitnesspal.android 2 958 7 7 7 2 0 2 0 X X 7 7 X 0 1 7
com.noom.walk 2 316 7 7 7 2 0 2 0 7 X X 7 7 0 1 7

com.picsart.studio 2 2622 7 7 7 4 0 4 0 X X X 7 X 0 1 7
com.rebtel.android 2 421 7 7 7 1 0 1 0 X 7 7 7 X 0 1 7
com.skout.android 2 583 7 7 7 1 0 1 0 X 7 7 7 X 0 1 7
com.slacker.radio 2 529 7 7 7 2 0 2 0 X X 7 7 7 0 1 7

com.somcloud.somnote 2 74 7 7 7 3 0 3 0 7 X X 7 X 0 1 X
com.soundcloud.android 2 415 7 7 7 2 0 2 0 X 7 7 7 X 0 1 7

com.stuckpixelinc.funnypics 2 243 7 7 7 1 0 1 0 X 7 7 7 X 0 1 X
com.textmeinc.textme 2 34 7 7 7 1 0 1 0 X 7 7 7 X 0 1 7

com.zillow.android.zillowmap 2 921 7 7 7 2 0 2 0 X X 7 7 X 0 1 X
taxi.android.client 2 490 7 7 7 1 0 1 0 X 7 7 7 X 0 1 7

wp.wpbeta 2 202 7 7 7 1 0 1 0 X 7 7 7 7 0 1 7

and email have been used in the authentication request
message even though the client app (our running example
miniinthebox) uses different names for some of the fields.
For timestamp and sign fields, we will still rely on our
Message Field Inference to identify them.

We tested whether these 76 app servers in §IV-B are vulnera-
ble to this access token hijacking attack. While we have found
36 of them that use Facebook Login, in fact 5 apps were actually
buggy in this feature (and we cannot launch the Facebook Login
for them). Therefore, we only have 31 apps that were tested. The
test is slightly different compared to our password brute force test
in that we only need to register one user on Facebook (with the
testappserver2016@gmail.com account). After that,
we need to intercept the Facebook access token oauth con-
firmation message as shown in Fig. 4(a), and the Facebook user
information query message as shown in Fig. 4(c), from which
we extract the fields of our interest such as access_token
and id. Next, we send two authentication request messages to
the app server, and apply the message diffing to identify other
fields. After that, we substitute the access_token and id
field in the client authentication request message, and replay
the execution of the cryptographically computed fields such as
sign to test whether the server is vulnerable or not.

The detailed result of the tested 31 apps is presented in
Table IV. Most columns share the same meaning as in Table III,
except we added whether the request messages use Access Token,
ID, or Email from the 12th to 14th column. We can notice from
Table IV that 21 (68%) of the apps use HTTPS, and we only
need to send two authentication request messages. Interestingly,
only 7 out of 31 (23%) of the request messages involves hashing

or signing. Also, we notice not all the request messages use
the access token, and some of them use the ID returned from
Facebook for the authentication. Meanwhile, all the response
messages for the same user’s login are not identical, but the
major difference still comes from the timestamp field. Finally,
we only send one request message to the server and we only find
9 out of 31 (29%) apps that are vulnerable to the Facebook token
hijacking attack.

V. DISCUSSIONS

A. Security Implications

AUTOFORGE has demonstrated that lack of security checks at
the server side can lead to several severe attacks such as password
brute forcing, leaked username and password probing, and access
token hijacking. This is a very serious problem considering
that a large volume of popular apps, including CNN, Expedia,
iHeartRadio, and Walmart as confirmed in our experiment are
vulnerable to these attacks. While it is true that an adversary
cannot sniff the password because of HTTPS, an attacker can
launch a malicious login attack in an owned device to install self-
signed certificates and automatically forge the request messages
even though there are cryptographic constraints. As such, we
would like to raise awareness for app developers: only using
HTTPS cannot defeat password brute-forcing, and neither can
hashing and (one-way) signing of client request messages.

Therefore, we need to examine the techniques that can be
used by app developers to mitigate or prevent the automatic
forgery of user request messages, especially in the scenario of
user authentication, and they can be summarized as follows:

12

• Limiting the number of login attempts. One sim-
ple solution app developers can adopt is to keep a
login attempt state at the server side and limit the
number of login attempts within a certain time win-
dow. We only found 11 out of 76 apps (14%), such
as com.imdb.mobile, that followed this approach.
While this solution cannot defeat leaked username and
password probing attacks, it can defeat at least user
password brute forcing. Meanwhile, unlike CAPTCHA
and two factor-authentication discussed below, this
defense will not change any user’s experience.

• Using CAPTCHA. Automatic data forgery is not a new
attack, and there are already solutions to mitigate this.
One way that has been widely used on the desktop is
the CAPTCHA [34]. A CAPTCHA is a program that
protects websites against automated resource abusing
or login attempts. However, we have not seen much
usage in mobile apps. We believe one reason is that
CAPTCHA might hurt user experience. However, as
we have demonstrated in this paper, to really slow
down attackers, CAPTCHA is a viable approach, though
CAPTCHA can also be broken [33].

• Two-factor authentication. Another intuitive way to
slow down the forgery of user request messages (includ-
ing the authentication) is to adopt two-factor authen-
tication [38]. Similar to CAPTCHA, it will certainly
hurt user experience, but it is unlikely for attackers to
successfully compromise two channels.

• Two-way authentication. The most effective way to
prevent client side data forgery is to authenticate the
client as well using a two-way (i.e., mutual) authentica-
tion [16]. Two-way SSL is one such an example, and it
uses digital signatures to authenticate both the server and
the client with their corresponding certificates. However,
it requires an extra effort of client certificate exchange
and imposes additional complexity and cost. Therefore,
we have not observed any apps that use this technique.

B. Limitations and Future Work

While we have made a first step demonstrating the feasibility
of automatic forgery of cryptographically consistent messages
to identify security vulnerabilities in mobile services, there are a
number of avenues for future improvement. In the following, we
discuss the limitations of AUTOFORGE and outline future work.

First, AUTOFORGE currently only focuses on HTTP/HTTPS
protocols. There are certainly apps that use other protocols such
as proprietary non-plaintext protocols. While our global optimal
sequence alignment algorithm (i.e., the Needleman-Wunsch
algorithm [27]) might be able to align the two diffed messages
to identify the diffed fields for non-plaintext protocols, we have
not evaluated it yet. Our next step is to test how AUTOFORGE
would perform with non-plaintext protocols.

Second, AUTOFORGE only performs lightweight API level
tracing of app’s execution, and assumes user input (such as the
entered username) would not be transformed (recall we use
content patching to identify the direct user inputs). However, a
user entered input could be translated into other forms. To really
track the possible transformations of the user input, a better way

is to perform fine-grained instruction level data flow tracking.
Therefore, we plan to integrate a taint analysis engine such as
TaintDroid [19] into AUTOFORGE to track the user’s input such
that we can still recognize the input in the request messages.

Third, AUTOFORGE currently only deals with the crypto-
graphic APIs listed in Table I. If an app uses other APIs or
native code, AUTOFORGE has to include them. We plan to
examine more apps and enrich the list with more APIs if there
are any. Meanwhile, if an app uses its own private cryptographic
functions, AUTOFORGE has to perform additional analysis (such
as those mentioned in Dispatcher [9], Aligot [11], or the methods
described by Grobert et al. [20]) to recognize these functions.

Fourth, our security test might have false positives because
of the limited number of tests we performed. For instance, an
app service could block the user after the (N + 1)-th failure
without us detecting it (because of our threshold of maximum N
guesses), and we would have to enlarge N to prune this. Note
that we set the parameter N to small numbers just for ethical
considerations, and a real attack would not be constrained by
this.

Finally, AUTOFORGE will enable many other security tests,
such as SQL injection by manipulating the corresponding
request fields (e.g., we can append certain data to the username).
In fact, we did find one app that is vulnerable to SQL injection
among the 76 apps. We leave the large scale systematic study
of this type of vulnerability to our future work.

C. Ethics

The goal of designing AUTOFORGE is to apply it to find vul-
nerabilities at the server side. In this case, we have to inevitably
send unnecessary packets to the service providers. We do take
ethics into consideration by minimizing the number of messages
sent to the server (recall the maximum number of messages we
sent is N + 1). Also, we have made responsible disclosure and
notified all the vulnerable app vendors. In fact, shortly after we
reported the vulnerabilities, three vendors patched their services
by only allowing a limited number of failed logins. For instance,
the iHeartRadio app has limited the maximum number of login
attempts to 15, the ESPN score center app limits it to 3, and the
Slacker Radio app limits it to 6. We believe many other vendors
will also patch their services very soon.

VI. RELATED WORK

At a high level, our work is related to protocol reverse
engineering, application dialogue replay, password brute forcing,
and mobile app vulnerability discovery. In this section, we review
these works and compare AUTOFORGE with them.

Protocol Reverse Engineering. There is a large body of re-
search focusing on protocol reverse engineering. Earlier efforts
(e.g., [8], [12], [24]) inferred the protocol format from network
traces. Protocol informatics [8] used the Needleman-Wunsch
algorithm [27] to align the protocol messages and infer the pro-
tocol format. Discoverer [12] proposed tokenization, recursive
clustering, and merging techniques to handle both text and binary
protocols from network traces.

Instead of only using the network traces, the other direction
of protocol reverse engineering is to use dynamic binary analysis

13

(taint analysis in particular) to reveal the protocol formats. A
number of systems or tools (e.g., [9], [10], [14], [25], [39]) have
been proposed. Among them, Polyglot [10] made the first attempt
of using binary code analysis to infer the protocol formats,
Tupni [14] recovers more fine-grained protocol formats, and
Dispatcher [9] focused on encrypted protocol message reverse
engineering. We plan to apply the techniques proposed by these
efforts to recover the Android apps’ protocol in a more general
way such as also inferring binary data based protocols.

Application Dialogue Replay. AUTOFORGE employs crypto-
graphic function replay to generate the authenticated messages,
which is similar to the existing application dialogue replay
systems. Similar to protocol reverse engineering, there are also
two categories of techniques: purely network traces based, and
binary code analysis based.

Similar to Protocol Informatics [8], RolePlayer [13] aligns
the byte-wise sequences of the protocol messages from network
traces, and then identifies and mutates some specific fields for
the application dialogue replay. By leveraging binary code
analysis, Replayer [28] enables more automatic replay. While
AUTOFORGE appears to be quite similar to these replay systems,
none of the existing efforts focused on cryptographic protocol
fields mutation (RolePlayer assumed there is no such field in the
protocol message, and Replayer set cryptographic fields in its
future work), which is the exact focus of AUTOFORGE.

Password Brute Forcing. Password based authentication has
been the de facto standard to protect access to sensitive in-
formation, with no exceptions to mobile apps and services.
It has always been a major focus for attackers over years,
and there are many efficient and practical ways of brute force
cracking a user’s password. For instance, assuming access to the
password file, attackers can use a dictionary based attack to break
user passwords. Recently, there were also significant efforts to
make dictionary attacks smarter by employing Markov models
(e.g., [26]), probabilistic context free grammars (e.g., [37]), and
history based guessing (e.g., [40]). There are also approaches
to make the password brute forcing much faster. Using rainbow
tables is one such approach, which consists of massive tables
of pre-calculated hashes, trading increased memory storage for
reduced computation time [29]. While AUTOFORGE does focus
on password brute forcing, it shows the new context of brute
forcing user passwords for mobile apps with the techniques of
automatically generating mutated passwords in the authenticated
request message.

Mobile App Vulnerability Discovery. In the past several years,
a considerable amount of efforts have focused on discovering
various vulnerabilities in mobile apps. For instance, Taint-
Droid [18] detects privacy leakage vulnerabilities by tracking
information flows. PiOS [17] uses static analysis to detect such
leaks in iOS apps. CHEX [23] detects component hajacking
vulnerabilities in Android apps by using a data-flow based
static analysis approach. SMV-Hunter [32] detects man-in-the-
middle SSL/TLS vulnerabilities with a hybrid static and dynamic
analysis. However, few efforts have been focusing on identifying
the vulnerabilities in an app’s server side. AUTOFORGE made
such a step in this direction and demonstrated that there are also
serious security vulnerabilities such as password brute forcing

if app server developers do not perform the necessary security
checks.

VII. CONCLUSION

We have presented AUTOFORGE, a tool that can
automatically forge cryptographically consistent messages from
the client side to test whether the server side of an app contains
security vulnerabilities such as brute-forcing, leaked username
and password probing, and access token hijacking. To enable
our security test, we have developed a set of techniques to
automatically infer protocol fields, label response messages,
replay cryptographic function execution, and regenerate request
messages. Our experimental results show that among the 76
tested popular apps (each with millions of installs), 65 of their
servers (86%) are vulnerable to password brute forcing attacks,
all of them (100%) are vulnerable to leaked username and
password probing attacks, and 9 of them (12%) are vulnerable to
Facebook access token hijacking attacks. We have performed re-
sponsible disclosure and notified each vulnerable app vendor, and
three of the service providers, including ESPN and iHeartRadio,
have patched their services shortly after our notification.

ACKNOWLEDGMENT

We are grateful to our shepherd Christopher Kruegel, and the
anonymous reviewers for their extremely helpful feedback. We
also would like to thank Erick Bauman and Murat Kantarcioglu
for proof-reading of the paper. This work was partially supported
by The Air Force Office of Scientific Research (AFOSR) under
Award No. FA-9550-12-1-0077. Any opinions, findings, conclu-
sions, or recommendations expressed are those of the authors
and not necessarily of the AFOSR.

REFERENCES

[1] “Burp suite,” https://portswigger.net/burp/.
[2] “Facebook token hijacking,” https://developers.facebook.com/docs/

facebook-login/security/#tokenhijacking.
[3] “Genymotion,” https://www.genymotion.com/.
[4] “Statistics and facts about app stores,”

http://www.statista.com/topics/1729/app-stores/.
[5] “Ui/application exerciser monkey,” https://developer.android.com/tools/

help/monkey.html.
[6] “Xposed module repository,” http://repo.xposed.info/.
[7] “Hackers released the passwords of over 70 million chinese internet

accounts,” https://dazzlepod.com/rootkit/, 2011.
[8] M. Beddoe, “The protocol informatics project,” http://www.4tphi.net/

~awalters/PI/PI.html.
[9] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher:

Enabling active botnet infiltration using automatic protocol reverse-
engineering,” in CCS, Chicago, Illinois, USA, 2009, pp. 621–634.

[10] J. Caballero and D. Song, “Polyglot: Automatic extraction of protocol
format using dynamic binary analysis,” in CCS, Alexandria, Virginia,
USA, 2007, pp. 317–329.

[11] J. Calvet, J. M. Fernandez, and J.-Y. Marion, “Aligot: cryptographic
function identification in obfuscated binary programs,” in CCS. ACM,
2012, pp. 169–182.

[12] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic protocol
reverse engineering from network traces,” in USENIX Security Symposium,
Boston, MA, August 2007.

[13] W. Cui, V. Paxson, N. Weaver, and R. H. Katz, “Protocol-independent
adaptive replay of application dialog,” in NDSS, San Diego, CA, February
2006.

14

https://portswigger.net/burp/
https://developers.facebook.com/docs/facebook-login/security/#tokenhijacking
https://developers.facebook.com/docs/facebook-login/security/#tokenhijacking
https://www.genymotion.com/
https://developer.android.com/tools/help/monkey.html
https://developer.android.com/tools/help/monkey.html
https://dazzlepod.com/rootkit/
http://www.4tphi.net/~awalters/PI/PI.html
http://www.4tphi.net/~awalters/PI/PI.html

[14] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz, “Tupni:
Automatic reverse engineering of input formats,” in CCS, Alexandria,
Virginia, USA, October 2008, pp. 391–402.

[15] A. Das, J. Bonneau, M. Caesar, N. Borisov, and X. Wang, “The Tangled
Web of Password Reuse,” in NDSS, February 2014.

[16] W. Diffie, P. C. Van Oorschot, and M. J. Wiener, “Authentication and
authenticated key exchanges,” Designs, Codes and cryptography, vol. 2,
no. 2, pp. 107–125, 1992.

[17] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications,” in NDSS, 2011.

[18] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth,
“TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones,” in OSDI, 2010.

[19] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones,” ACM
Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[20] F. Gröbert, C. Willems, and T. Holz, “Automated identification of crypto-
graphic primitives in binary programs.” in RAID, vol. 6961. Springer,
2011, pp. 41–60.

[21] B. Ives, K. R. Walsh, and H. Schneider, “The domino effect of password
reuse,” Commun. ACM, vol. 47, no. 4, pp. 75–78, Apr. 2004. [Online].
Available: http://doi.acm.org/10.1145/975817.975820

[22] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic protocol format reverse
engineering through context-aware monitored execution,” in NDSS, San
Diego, CA, February 2008.

[23] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting android
apps for component hijacking vulnerabilities,” in CCS. ACM, 2012, pp.
229–240.

[24] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker,
“Unexpected means of protocol inference,” in IMC. Rio de Janeriro,
Brazil: ACM Press, 2006, pp. 313–326.

[25] P. Milani Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex:
Protocol Specification Extraction,” in IEEE Symposium on Security &
Privacy, Oakland, CA, 2009, pp. 110–125.

[26] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” in CCS, ACM, 2005, pp. 364–372

[27] S. B. Needleman and C. D. Wunsch, “A general method applicable to
the search for similarities in the amino acid sequence of two proteins,”
Journal of molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[28] J. Newsome, D. Brumley, J. Franklin, and D. Song, “Replayer: Automatic
protocol replay by binary analysis,” in CCS, 2006.

[29] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Advances in Cryptology-CRYPTO 2003. Springer, 2003, pp. 617–630.

[30] B. Schneier, “Cryptography: The importance of not being different,”
Computer, vol. 32, no. 3, pp. 108–109,112, Mar. 1999.

[31] M. Siegler, “One of the 32 million with a rockyou account? you may want
to change all your passwords. like now,” http://techcrunch.com/2009/12/
14/rockyou-hacked/, 2009.

[32] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in NDSS, San Diego, CA, February 2014.

[33] J. Tam, J. Simsa, S. Hyde, and L. V. Ahn, “Breaking audio captchas,” in
NIPS, 2008, pp. 1625–1632.

[34] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha: Using
hard ai problems for security,” in Advances in Cryptology — EUROCRYPT
2003. Springer, 2003, pp. 294–311.

[35] R. A. Wagner and M. J. Fischer, “The string-to-string correction problem,”
Journal of the ACM (JACM), vol. 21, no. 1, pp. 168–173, 1974.

[36] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans, and Y. Gurevich, “Ex-
plicating sdks: Uncovering assumptions underlying secure authentication
and authorization.” in USENIX Security, 2013, pp. 399–314.

[37] M. Weir, S. Aggarwal, B. d. Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” in SP, 2009, pp.
391–405.

[38] K. P. Weiss, “Method and apparatus for positively identifying an individ-
ual,” Jan. 19 1988, uS Patent 4,720,860.

[39] G. Wondracek, P. Milani, C. Kruegel, and E. Kirda, “Automatic network
protocol analysis,” in NDSS, San Diego, CA, February 2008.

[40] Y. Zhang, F. Monrose, and M. K. Reiter, “The security of modern
password expiration: An algorithmic framework and empirical analysis,”
in CCS, ACM, 2010, pp. 176–186.

APPENDIX

In §IV-B, we presented the detailed experimental results
for 23 app servers, and these apps are selected based on their
categories. The detailed app classification, their version, and
protocol information is presented in Table V. The result for
the 53 other app servers is presented in Table VI. Note that
one of the app vendors sent us special request to anonymize
their name, after we made the responsible disclosure to all the
vulnerable app vendors. The name of this app package is denoted
anonymized_due_to_special_request in both Table V and VI.
We can see from Table V that these 76 apps fall into 21 categories
ranging from Books&Reference to Weather. Also, most apps use
HTTPS protocol (54 out 76). Regarding Table VI, as its columns
share the same format as Table III and we have explained them
in greater detail in §IV-B, detailed explanation of these results is
elided for brevity.

15

http://doi.acm.org/10.1145/975817.975820
http://techcrunch.com/2009/12/14/rockyou-hacked/
http://techcrunch.com/2009/12/14/rockyou-hacked/

TABLE V. THE CATEGORY, INSTALLS, APP NAME, VERSION, AND PROTOCOL INFORMATION FOR THE TESTED 76 APPS.

Category #install App Package Name Version Protocol

Books & Reference 100,000,000 com.sirma.mobile.bible.android 6.0.3 HTTPS
Books & Reference 50,000,000 com.kobobooks.android 6.3.13738 HTTPS
Books & Reference 5,000,000 com.overdrive.mobile.android.mediaconsole 3.4.0 HTTPS
Books & Reference 5,000,000 wp.wpbeta 6.1.0.8 HTTPS
Business 10,000,000 com.sahibinden 2.4.0 HTTPS
Business 5,000,000 com.timesgroup.magicbricks 6.1.2 HTTP
Business 5,000,000 naukriApp.appModules.login 6.3.1 HTTPS
Business 1,000,000 com.careerjet.android 5.1.3 HTTP
Casual 500,000,000 me.pou.app 1.4.67 HTTP
Comics 5,000,000 jp.ebookjapan.ebireader 2.3.79.0 HTTPS
Communication 50,000,000 com.browan.freeppmobile.android FIAD.BRO.3.7.0.445 HTTP
Communication 50,000,000 com.mx.browser 4.5.0.2000 HTTPS
Communication 50,000,000 com.textmeinc.textme 2.8.8 HTTPS
Communication 50,000,000 ru.mail.mailapp 3.1.2.11965 HTTPS
Communication 10,000,000 com.my.mail 3.1.3.12222 HTTPS
Communication 5,000,000 com.mx.browser.tablet 4.3.5.2000 HTTPS
Communication 5,000,000 com.rebtel.android 3.11.0 HTTPS
Education 5,000,000 com.dictionary.flashcards 1 HTTP
Entertainment 100,000,000 com.imdb.mobile 5.5.6.105561200 HTTPS
Entertainment 50,000,000 com.cgv.android.movieapp 4.0.7 HTTPS
Entertainment 50,000,000 com.dailymotion.dailymotion 4760 HTTPS
Entertainment 10,000,000 com.viewster.androidapp 4.6.3 HTTPS
Entertainment 5,000,000 com.gamefly.android.gamecenter 3.49 HTTPS
Entertainment 5,000,000 com.stuckpixelinc.funnypics 3.3.1 HTTP
Finance 5,000,000 com.netgate 8.22 HTTPS
Health & Fitness 50,000,000 com.fatsecret.android 4.1.2.2 HTTP
Health & Fitness 50,000,000 com.myfitnesspal.android 4.6.1 HTTPS
Health & Fitness 10,000,000 com.noom.walk 1.1.3 HTTP
Lifestyle 50,000,000 com.cookpad.android.activities 5.2.1.0 HTTPS
Lifestyle 50,000,000 com.zillow.android.zillowmap 6.6.8.4011 HTTPS
Lifestyle 10,000,000 com.dominospizza 2.7.0 HTTPS
Lifestyle 5,000,000 cn.etouch.ecalendar2 6.1.5 HTTPS
Media & Video 10,000,000 com.youku.phone 4.7.1 HTTP
Media & Video 5,000,000 com.qiyi.video.market 6.5.1 HTTPS
Media & Video 5,000,000 com.sohu.sohuvideo 4.3.5 HTTP
Media & Video 1,000,000 tv.danmaku.bili 4.2.3 HTTPS
Medical 5,000,000 com.aranoah.healthkart.plus 7.1.6 HTTP
Medical 5,000,000 com.sigmaphone.topmedfree 5.8.1 HTTPS
Medical 5,000,000 leafly.android 2.5.0 HTTP
Music & Audio 100,000,000 com.slacker.radio 6.0.1816 HTTPS
Music & Audio 100,000,000 com.soundcloud.android 15.08.14-release HTTPS
Music & Audio 50,000,000 com.clearchannel.iheartradio.controller 5.8.0 HTTPS
Music & Audio 10,000,000 com.ad60.songza 5.2.0.0 HTTPS
Music & Audio 10,000,000 com.kugou.android 7.6.1 HTTP
Music & Audio 10,000,000 anonymized_due_to_special_request - HTTPS
News & Magazines 50,000,000 com.cnn.mobile.android.phone 2.8.2 HTTPS
News & Magazines 10,000,000 com.ideashower.readitlater.pro 5.8.5 HTTPS
News & Magazines 5,000,000 anews.com 2.7.166 HTTP
News & Magazines 5,000,000 com.mobilesrepublic.appygamer 5.1.4 HTTP
News & Magazines 5,000,000 com.mobilesrepublic.appygeek 5.1.3 HTTP
Photography 500,000,000 com.picsart.studio 5.6.3 HTTPS
Productivity 50,000,000 com.autodesk.autocadws 3.1 HTTPS
Productivity 50,000,000 com.ecareme.asuswebstorage 2.2.7.8664 HTTPS
Productivity 5,000,000 com.mediafire.android 3.2.3 HTTPS
Productivity 5,000,000 com.somcloud.somnote 2.2.1 HTTPS
Productivity 1,000,000 com.geeksoft.wps 3.0.7 HTTP
Shopping 50,000,000 com.biggu.shopsavvy 9.3.3 HTTPS
Shopping 50,000,000 com.walmart.android 2.8.2 HTTPS
Shopping 10,000,000 com.jabong.android 2.4.1 HTTPS
Shopping 5,000,000 com.bukalapak.android 3.0.1 HTTPS
Shopping 5,000,000 com.meucarrinho 5.6.1 HTTP
Shopping 5,000,000 com.miniinthebox.android 3.10.0 HTTP
Social 100,000,000 com.tumblr 3.9.0.50 HTTPS
Social 50,000,000 com.askfm 2.2.1 HTTPS
Social 50,000,000 com.chatous.pointblank 3.5.1 HTTPS
Social 50,000,000 com.skout.android 4.14.4 HTTP
Social 50,000,000 com.unearby.sayhi 4.39 HTTP
Social 10,000,000 com.match.android.matchmobile 3.2.0 HTTPS
Social 5,000,000 com.tenthbit.juliet 1.8.0 HTTPS
Sports 50,000,000 com.espn.score_center 4.4.1.1 HTTPS
Tools 10,000,000 com.sohu.inputmethod.sogou 7.6 HTTPS
Tools 5,000,000 xcxin.fehd 2.3.0 HTTPS
Transportation 5,000,000 taxi.android.client 5.4.5 HTTPS
Travel & Local 50,000,000 com.expedia.bookings 6.3.1 HTTPS
Travel & Local 5,000,000 com.viamichelin.android.michelintraffic 4.3.0.4 HTTP
Weather 1,000,000 disasterAlert.PDC 3.2 HTTPS

16

TABLE VI. THE DETAILED PASSWORD BRUTE-FORCING TESTING RESULT FOR THE OTHER 53 APP SERVERS.

Step ¶ Step · Step ¸ Step ¹ Step º

Category App Package Name

#I
np

ut
M

sg

#T
ra

ce
d

A
PI

E
nc

ry
pt

io
n?

H
as

hi
ng

?

Si
gn

in
g?

#D
iff

ed
Fi

el
d

#S
ys

Fi
el

d

#I
np

ut
Fi

el
d

#C
ry

pt
oF

ie
ld

E
qu

al
R

es
on

se
?

Sy
sF

ie
ld

O
nl

y?

#S
lic

ed
A

PI

#R
eq

ue
st

Vu
ln

er
ab

le
?

Books & Reference com.kobobooks.android 4 240 7 7 7 2 0 2 0 7 7 0 21 X
Books & Reference com.overdrive.mobile.android.mediaconsole 4 448 7 7 7 2 0 2 0 7 7 0 21 X
Books & Reference wp.wpbeta 4 333 7 7 7 2 0 2 0 7 7 0 21 X
Business com.careerjet.android 4 28 X 7 7 2 1 0 1 7 X 9 21 X
Business com.timesgroup.magicbricks 4 89 7 7 X 2 0 0 2 7 X 20 21 X
Business naukriApp.appModules.login 4 115 7 7 7 2 0 2 0 7 X 0 21 X
Communication com.mx.browser 4 195 7 X 7 2 0 1 1 7 X 7 21 X
Communication com.mx.browser.tablet 4 178 7 X 7 2 0 1 1 7 X 7 21 X
Communication com.my.mail 4 340 7 X 7 3 0 2 1 7 X 7 21 X
Communication com.rebtel.android 4 208 7 X 7 5 2 2 1 7 X 8 21 7
Communication com.textmeinc.textme 4 241 7 X 7 2 0 1 1 7 X 7 21 X
Communication ru.mail.mailapp 4 83 7 X 7 3 0 2 1 7 X 7 21 X
Entertainment com.cgv.android.movieapp 4 67 7 X 7 3 0 1 2 7 X 18 21 X
Entertainment com.dailymotion.dailymotion 4 34 7 7 X 4 1 2 1 7 X 12 21 X
Entertainment com.gamefly.android.gamecenter 4 86 7 7 X 4 1 2 1 7 X 7 21 X
Entertainment com.stuckpixelinc.funnypics 4 31 7 X 7 2 0 1 1 7 X 7 21 X
Entertainment com.viewster.androidapp 4 626 7 7 7 2 0 2 0 7 7 0 21 X
Health & Fitness com.myfitnesspal.android 4 269 7 X 7 2 0 1 1 7 X 7 21 X
Health & Fitness com.noom.walk 4 48 7 X 7 3 0 2 1 7 7 18 21 X
Lifestyle cn.etouch.ecalendar2 4 1232 X 7 7 1 0 0 1 7 X 11 21 X
Lifestyle com.dominospizza 4 265 7 7 7 2 0 2 0 7 X 0 21 X
Lifestyle com.zillow.android.zillowmap 4 242 7 7 7 2 0 2 0 7 X 0 21 X
Media & Video com.qiyi.video.market 4 1169 7 X 7 4 1 2 1 7 X 18 3 7
Media & Video com.sohu.sohuvideo 4 72 7 X 7 2 0 1 1 7 X 7 10 7
Media & Video tv.danmaku.bili 4 1294 X X 7 3 0 1 2 7 X 15 3 7
Medical com.sigmaphone.topmedfree 4 49 X 7 7 1 0 0 1 7 X 1 15 7
Medical leafly.android 4 38 7 7 7 2 0 2 0 7 X 0 21 X
Music & Audio com.ad60.songza 4 132 7 7 7 2 0 2 0 7 7 0 21 X
Music & Audio com.clearchannel.iheartradio.controller 4 1237 7 7 7 2 0 2 0 7 X 0 21 X
Music & Audio com.kugou.android 4 637 X X 7 4 1 1 2 7 X 22 21 X
Music & Audio com.soundcloud.android 4 60 7 7 7 2 0 2 0 7 X 0 21 X
Music & Audio anonymized_due_to_special_request 4 1792 7 7 X 5 2 2 1 7 X 7 21 X
News & Magazines anews.com 4 192 7 7 7 2 0 2 0 7 X 0 21 X
News & Magazines com.ideashower.readitlater.pro 4 239 7 7 7 2 0 2 0 7 X 0 21 X
News & Magazines com.mobilesrepublic.appygamer 4 276 7 7 7 2 0 2 0 7 X 0 21 X
News & Magazines com.mobilesrepublic.appygeek 4 883 7 7 7 2 0 2 0 7 X 0 21 X
Productivity com.ecareme.asuswebstorage 4 85 7 X X 6 3 1 2 7 X 17 21 X
Productivity com.geeksoft.wps 4 25 7 X 7 3 0 2 1 7 X 7 21 X
Productivity com.mediafire.android 4 201 7 X 7 3 0 2 1 7 X 8 12 7
Productivity com.somcloud.somnote 4 743 7 X X 5 2 1 2 7 X 14 21 X
Shopping com.bukalapak.android 4 430 X 7 7 1 0 0 1 7 X 1 21 X
Shopping com.jabong.android 4 780 7 7 7 2 0 2 0 7 X 0 21 X
Shopping com.meucarrinho 4 138 7 X 7 5 2 2 1 7 X 7 21 X
Shopping com.miniinthebox.android 4 228 X X 7 4 1 1 2 7 X 19 21 X
Shopping com.walmart.android 4 343 7 7 7 2 0 2 0 7 7 0 21 X
Social com.askfm 4 75 7 7 X 3 0 1 2 7 X 7 21 X
Social com.chatous.pointblank 4 43 7 7 7 1 0 0 0 7 X 1 21 X
Social com.match.android.matchmobile 4 308 7 7 7 2 0 2 0 7 X 0 21 X
Social com.skout.android 4 115 7 X 7 3 0 2 1 7 X 7 3 7
Social com.tenthbit.juliet 4 24 7 7 7 2 0 2 0 7 X 0 21 X
Social com.unearby.sayhi 4 60 7 X 7 2 0 1 1 7 X 7 21 X
Tools xcxin.fehd 4 73 X 7 7 2 0 1 1 7 X 7 21 X
Travel & Local com.viamichelin.android.michelintraffic 4 33 7 7 7 3 0 3 0 7 X 0 21 X

17

	I Introduction
	II Background and Overview
	II-A A Running Example
	II-B Observation
	II-C Overview

	III Detailed Design
	III-A API Hooking
	III-B Message Field Inference
	III-C Response Message Labeling
	III-D Request Message Forgery

	IV Evaluation
	IV-A Experiment Setup
	IV-B Password Brute-forcing Testing
	IV-C Leaked Username and Password Probing Testing
	IV-D Facebook Access Token Hijacking Testing

	V Discussions
	V-A Security Implications
	V-B Limitations and Future Work
	V-C Ethics

	VI Related Work
	VII Conclusion
	References

