Exploiting Acoustic Side-Channel for Attack on Additive Manufacturing Systems
Sujit Rokka Chhetri, Arquimedes Canedo†, Mohammad Abdullah Al Faruque
University of California, Irvine
{schhetri, alfaruqu}@uci.edu, †arquimedes.canedo@siemens.com

Introduction

- **Additive Manufacturing:**
 - Build 3D objects in layers.
 - Rapid prototyping of freeform 3D objects.
 - Disruptive technology [1]. E.g. 3D-Printers.
- **Side-Channels:**
 - Power, acoustic, electromagnetic, timing etc.
- **Intellectual Property (IP):**
 - Internal and external 3D geometry, process parameters, machine parameters [2] etc.

Background and Motivation

- **Physical-To-Cyber Domain Attacks:**
 - Utilize physical domain data to conduct attack on Confidentiality (steal IP), Integrity, and Availability (CIA).
- **Side-Channel Leakage in Additive Manufacturing:**
 - Acoustic signal vary in frequency and intensity according to load, speed and direction of the nozzle movement.

Acoustic Attack Model

- **Attack Model [3]:**
 - Train Learning Algorithms.
 - Record acoustics.
 - Extract Information about G-code (Used in 3D-Printers).
 - Reconstruct the Object.

Attack Methodology

- **Attack Method [3]:**
 - Pre-process to remove noise.
 - Extract time and frequency domain features.
 - Train different learning algorithms to extract speed, axis, and direction.
 - Predict parameters.
 - Context based post-processing to improve accuracy.
 - Reconstruct G-code.

Experimental Setup

- **Original G-code**
- **Reconstructed G-code**

Results

- **Test Parameters:**
 - Speed, Dimension, and Complexity (Movement in Multiple Axes).
- **Average Accuracy:**
 - Axis Prediction Accuracy Classification Models: 78.35%.
 - Length Prediction Error of Regression Models: 17.82%.

Summary

- High correlation between physical and cyber domain data.
- Side-channel information leakage not considered in additive manufacturing systems.
- Leakage from side-channel can breach confidentiality.
- It is imperative to incorporate side-channel leakage as a parameter in design methodology for secure additive manufacturing systems (future work).

References