Coordinated Scan Detection

Carrie Gates

CA Labs

carrie.gates@ca.com
A Few Definitions to Start….

1. A **target** is a single port at a single IP address.
2. A **scan** is a set of connection attempts from a single source to a set of targets during time interval.
3. A **source** is a computer system from which a scan originates.
4. A **coordinated scan** is a collection of scans from multiple sources where there is a single instigator behind the set of sources.
What is a co-ordinated port scan?
A detector can be designed to detect coordinated TCP port scans against a target network where the scan footprint is either horizontal or strobe with a high detection rate (>= 98%) and a low false positive rate (< 1%) on /16 networks.
Related Work

1. Defining a coordinated scan as having very specific characteristics so that scans can be easily clustered

2. Clustering packets or alerts based on feature similarities using a machine learning approach

3. Manual analysis of network traffic, often aided by visualization approaches, to detect patterns that are representative of coordinated scanning activity
Methodology

1. Develop a model of adversary types
2. Develop a detector based on the model
3. Evaluate the detector
 1. Identify key variables
 2. Model using regression equations
Adversary Model
Adversary Model

- Developed based on:
 - Adversary targets
 - Footprint scan of these targets generates
 \(\forall = < |A|, |P|, \zeta(C), \mathcal{H}(C), \zeta, \kappa > \)
 - 21 adversary footprint patterns identified

We have developed a detector that can detect 9 of the 21 adversary types, where either \(\zeta \) or \(\kappa \) contains at least one subnet.
• Inspired by the set covering problem - find the minimum number of sets that covers the entire space

• Our modification: find the set of scans that maximizes coverage, $\zeta(C)$, while minimizing overlap, θ
Detector

- Coordinated scan recognized in set if:
 1. Set consists of more than one scan, $|S| > 1$
 2. Overlap is acceptably small, $\Theta < Y\%$
 3. Coverage is acceptably large, $\zeta(C) > X\%$
 4. Hit rate is acceptable large, $\mathcal{H}(C) > Z\%$
Algorithm (Altgreedy Portion)

\[S \leftarrow \text{smallestScan}(A) \]

repeat

\[i \leftarrow \text{smallestOverlap}(A - \text{rejected}, S) \]

if newlyCoveredIPs(\(S, i \)) > 0 then

add scan to solution set

else

possibly reject scan

if overlap(\(S \)) > MAXOVERLAP then

\[i \leftarrow \text{greatestOverlap}(S) \]

\[S \leftarrow S - \{i\} \]

possibly reject scan

until \(S \cup \text{rejected} == A \)
Algorithm (Detection Portion)

while overlap(S) > MAXOVERLAP
 $i \leftarrow$ greatestOverlap(S)
 $S \leftarrow S - i$
end while

while (! isDPS(S)) && (coverage(S) > MINCOVERAGE)) do
 gap \leftarrow largest set of contiguous IP addresses not covered in S
 $S \leftarrow$ scans in largest subset of S when split into two sets
end while

if isDPS(S) then
 results $\leftarrow S$
end if
Testing the Algorithm

- Ideal case is real, labeled data
 - Hard to obtain
 - How do you confirm that labels are correct?
 - Red-teaming

- Emulation
 - Uses real data as background noise
 - Uses / restricted to actual scan tools
 - Isolated environment means no legal issues

- Simulation
 - Need to prove that simulation contains no bias
 - Potentially allows greater exploration of space
Experimental Design

- Scans were performed on DETER testbed

- Noise was obtained from four /16 live networks
Identification of Key Variables

- What are the inputs?
 1. Minimum network coverage
 2. Maximum overlap
 3. Number of (noise) scans

- What are the scan characteristics?
 4. Scanning algorithm
 5. Number of scanning sources
 6. Number of ports scanned
<table>
<thead>
<tr>
<th></th>
<th>Values for Key Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Network Coverage</td>
</tr>
<tr>
<td></td>
<td>Network Coverage</td>
</tr>
<tr>
<td></td>
<td>0x10 100</td>
</tr>
<tr>
<td>2</td>
<td>Overlap</td>
</tr>
<tr>
<td></td>
<td>Overlap</td>
</tr>
<tr>
<td></td>
<td>0 10x20</td>
</tr>
<tr>
<td>3</td>
<td>Number of Noise Scans</td>
</tr>
<tr>
<td></td>
<td>Number of Noise Scans</td>
</tr>
<tr>
<td></td>
<td>0 10x100 X 1000</td>
</tr>
<tr>
<td>4</td>
<td>Scanning Algorithm</td>
</tr>
<tr>
<td></td>
<td>Scanning Algorithm</td>
</tr>
<tr>
<td></td>
<td>DScan, NSAT</td>
</tr>
<tr>
<td>5</td>
<td>Number of Scanning Sources</td>
</tr>
<tr>
<td></td>
<td>Number of Scanning Sources</td>
</tr>
<tr>
<td></td>
<td>2 700000 X 100</td>
</tr>
<tr>
<td>6</td>
<td>Number of Scanned Ports</td>
</tr>
<tr>
<td></td>
<td>Number of Scanned Ports</td>
</tr>
<tr>
<td></td>
<td>1 65536 X 5</td>
</tr>
</tbody>
</table>
Training and Testing Data

| Cov % | Ov % | Algo | Scan Win | | S| | P| | DR | FP |
|------|-----|------|----------|-----|---|---|---|---|---|
| 86 | 0 | 0 | 800 | 39 | 1 | 1.00 | 0.003 |
| 77 | 11 | 1 | 900 | 36 | 5 | 1.00 | 0.006 |
| 64 | 3 | 1 | 200 | 48 | 2 | 1.00 | 0.000 |
| 18 | 17 | 1 | 500 | 64 | 1 | 0.00 | 0.000 |
Regression Model (Detection)

\[P(\text{co-ordinated scan is detected}) = \frac{e^y}{1 + e^y} \]
\[y = -1.592 + 0.031 x_1 - 0.003 x_4 + 0.021 x_5 + 0.576 x_6 \]
Regression Model (False Positives)

\[fp = -0.007494 + 0.00005559 \, x_1 + 0.0004216 \, x_2 \\
+ 0.00005877 \, x_5 + 0.001903 \, x_6 \]

\(x_1 = \text{network coverage} \)
\(x_2 = \text{overlap} \)
\(x_5 = \text{number of sources} \)
\(x_6 = \text{number of ports} \)
Conclusion: Accept Hypothesis

<table>
<thead>
<tr>
<th>% Cov</th>
<th>% Ov</th>
<th>Noise</th>
<th></th>
<th>S</th>
<th></th>
<th>P</th>
<th>DR</th>
<th>FP</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>0.998</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>0.967</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>1000</td>
<td>100</td>
<td>5</td>
<td>0.979</td>
<td>0.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
<td>2</td>
<td>5</td>
<td>0.985</td>
<td>0.008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>0.980</td>
<td>0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>0.967</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td>0.998</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>1000</td>
<td>100</td>
<td>5</td>
<td>0.979</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>100</td>
<td>2</td>
<td>5</td>
<td>0.985</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>100</td>
<td>100</td>
<td>1</td>
<td>0.980</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How to Game My Detector

1. Do not scan a contiguous space
 - E.g., all existing hosts might not be contiguous
 - But… can “compress” non-existing hosts to generate contiguous space - *might* address this issue

2. Scan less than 95% of contiguous space
 - Hit rate for algorithm is set at >= 95%
 - Need further work to determine lower bound

3. Distribute scans from each source over enough time

4. Make sure sources are not detected by single-source scan detection algorithm
What is the Effect of Time?

- Time is the wrong variable
- How well does this work when deployed?
 - How much of each scan is required before recognizing a coordinated scan?
 - How many scans are required before the coordinated scan is detected?
 - How should the sliding window be implemented?
Key Contributions

1. Adversary model
 - Provides an enumeration of the possible adversary types in this space

2. Detection algorithm
 - High detection rate and low false positive rate under certain (known) circumstances