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Abstract—In this age of massive data gathering for purposes
of personalization, targeted ads, etc. there is an increased need for
technology that allows for data analysis in a privacy-preserving
manner. Private Stream Aggregation as introduced by Shi et al.
(NDSS 2011) allows for the execution of aggregation operations
over privacy-critical data from multiple data sources without
placing trust in the aggregator and while maintaining differential
privacy guarantees. We propose a generic PSA scheme, LaPS,
based on the Learning With Error problem, which allows for a
flexible choice of the utilized privacy-preserving mechanism while
maintaining post-quantum security. We overcome the limitations
of earlier schemes by relaxing previous assumptions in the
security model and provide an efficient and compact scheme with
high scalability. Our scheme is practical, for a plaintext space
of 216 and 1000 participants we achieve a performance gain in
decryption of roughly 150 times compared to previous results in
Shi et al. (NDSS 2011).

I. INTRODUCTION

Suppose, your local city municipality would like to obtain an
overview of the health status of its citizens across different
parts of the city. Further suppose, it will outsource the work
to a contractor who is responsible for gathering the data
from all local hospitals and producing the desired statistics.
Clearly, the input data provided by the hospitals is potentially
privacy-sensitive as it concerns health-related data. From a
standard differential privacy point of view we are concerned
with adversaries that are able to derive information from the
published statistics about individual data records in the input
data (see e.g. [25], [18]). Therefore, we are looking to apply
privacy-preserving techniques to the statistics output before
publication such that, given the published result, it is hard to
derive any privacy-sensitive information about individual data
points. In the differential privacy setting, this is achieved by
adding noise to the raw output, such that the relation between
the final output and the input is concealed.

In our example, the contractor will therefore be instructed
to add some noise to the produced statistics before outputting
it. Figure 1 illustrates this setting: U1, . . ., UN are the hospitals

with their respective data D1, . . ., DN , which they transmit
to the contractor At. At then evaluates the desired statistical
function on the input data and adds some noise N . Finally she
publishes the result Σ. Assuming that N is properly distributed,
the result Σ is now differentially private.

There are two problems with this approach: first, the
hospitals have to send their sensitive data to the contractor.
Therefore, the contractor has to be trusted to keep the data
confidential and use it only for the original intended purpose.
Second, the contractor is also entrusted with adding noise, such
that the published output is indeed differentially private. The
latter could be partially mitigated by simply funneling back
the statistics result to the city municipality and shifting the
task of privacy-preserving noise addition and final publication
to it. However, this is only a partial solution as the contractor
still holds the raw statistics result, he may maliciously take
advantage of this information, and full trust still needs to be
placed in the municipality.

Therefore, the standard differential privacy model assumes
a trusted data handler (e.g., the contractor) that executes
privacy-preserving operations such that statistics over the
users’ (e.g. the hospitals) data are differentially private. For the
special case of data aggregation the concept of Private Stream
Aggregation (PSA) eliminates this assumption and incorporates
an untrusted aggregator. Shi et al. [40] were the first to
propose a PSA protocol that allows a set of users to compute
sum aggregates over their data with provable security and
privacy guarantees. Their approach tackles the aforementioned
issues by designing a scheme that has two core properties:
aggregation of encrypted data and distributed noise generation.
Hence, as depicted in Figure 2 each user Ui now adds some
noise Ni to their data Di resulting in a “noisy” value Xi,
which she encrypts and transmits to the aggregator Ash. Ash
then performs the aggregation over all received ciphertexts and
can only decrypt the aggregated result Σ, which she publishes.
Note that each plaintext Xi already contains noise. Concretely,
Shi et al. [40] ensure differential privacy of the output using
“randomized” geometric noise, i.e. each user adds geometric
noise with a certain probability depending on the number of
overall participants. Consequently, the Ni’s accumulate into a
properly distributed N within the aggregation result Σ such
that differential privacy is guaranteed. Hence, in our example
the city municipality does not need to rely on the contractor
to add noise in order to ensure overall differential privacy and
it is not concerned with possible compromise of the patient
records either.
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Fig. 1: Standard privacy model: trusted aggregator At, where
{Ui}ni=1: users, {Di}ni=1: privacy-sensitive data, respectively
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Σ = Dec(f

 Enc(X1)
. . .

Enc(Xn)

)Un

U1

U2

publish Σ

D1

Dn

D2

. . .

Enc(Xn)

Enc(X1)

Enc(X2)

Fig. 2: PSA model: untrusted aggregator Ash, where
{Xi}ni=1 noisy user data

Shi et al. [40] left as an open problem the design of a
PSA scheme that supports a large plaintext space to compute
sums, which is inherently limited in [40] due to their reliance
on discrete logarithms. In this work, we solve this challenge
by leveraging the Learning With Errors (LWE) problem.
The LWE problem was introduced in Regev’s seminal work
[39]. As a novel hardness assumption it lead to a series of
different LWE-based cryptosystems and applications, which by
extension are also post-quantum secure (e.g. [31], [21], [38],
[20], [34]).

A. Our Approach

The Augmented LWE (A-LWE) problem introduced by El
Bansarkhani et al. [16] hides a message m inside the error-
term e of an otherwise normal looking LWE-term (A,bT =
sTA + eT ). This is possible by first encoding the message
into a pseudo-random vector v and using this vector in order
to sample the error term e

$← DΛ⊥
v (G),αq . The resulting error

distribution is indistinguishable from the standard discrete
Gaussian distribution, which is the error distribution regularly
used for LWE. The message can be uniquely recovered by
retrieving v = Ge mod q and reversing the encoding, where
G is a gadget matrix, i.e. G = I ⊗ gT , where ⊗ is the
Kronecker product, gT = (1, 2, . . . , 2k−1) and q = 2k is
the modulus [34] (see Preliminaries in Section III for more
details).

As the authors of [16] show, this way of leveraging the
error term as a data container yields straightforward encryption
capabilities. Note that this is more efficient than typical LWE-
based encryption, where a message gets added to an LWE-term
and a new LWE-term is needed for each encryption to provide
fresh randomness. This A-LWE-based encryption scheme of-
fers higher bandwidth per encryption and fast decryption due
to a simple decryption operation. Therefore, using the A-LWE
hardness assumption and this particular encryption technique
(as opposed to e.g. a basic Regev-style encryption [39] scheme)
is instrumental in achieving significant efficiency gains in our
resulting PSA scheme.

A solution that does not (quite) work. The A-LWE decryp-
tion operation is also much more efficient than solving a
discrete log. Intuitively, we can construct an A-LWE-based
encryption scheme (using for instance the generic scheme
provided in [16]) and encrypt each PSA participant’s noisy
value using this encryption technique rather than the Diffie-
Hellman based approach from [40]. Unfortunately, a closer

look at the way that the message is encoded in A-LWE reveals
that we cannot use A-LWE in its original form in a straight-
forward manner. The message is XOR-ed with a hash of the
secret key: v = encode(H(s)⊕m). First, the XOR-operation
is not additively homomorphic over the integers. Hence, the
aggregator would fail to provide an accurate aggregation result.
Additionally, note that s is the individual user’s secret key.
Therefore, even if we could find a way to ensure the integrity
of the sum, correct decryption would require the knowledge
of the user’s secret keys. This is undesirable as it undermines
the idea of not trusting the aggregator in the first place.

A solution that does work. In order to resolve this dilemma
we move away from this “hard-coded” formulation of the
encoding step and define a somewhat generalized version
of the A-LWE problem, where v can be generated by any
additively homomorphic function that takes m as an input
and can be uniquely inverted. Fortunately the authors in [16]
show, that from a security perspective the only requirement that
v has to fulfill is indistinguishability from random. Suppose
this precondition holds, hardness of the overall A-LWE term
holds without any adjustments or additional reductions, i.e. it
seamlessly reduces from regular LWE and therefore worst-case
lattice problems.

Indistinguishability from random can be achieved by stan-
dard crypto techniques. In fact, any additively homomorphic
encryption scheme with pseudo-random ciphertexts will sat-
isfy this requirement as long as the addition of ciphertexts
corresponds to the addition of plaintexts. In particular, let en-
cryption routine Enc and decryption routine Dec be additively
homomorphic. Then Dec(Enc(

∑
imi)) = Dec(

∑
i Enc(mi))

for plaintexts {mi}. Additionally, let Enc provide pseudo-
random output, then each ciphertext c is indistinguishable
from random. Hence, setting v := c immediately fulfills our
requirement. If we also assume correct decryption, then we
can deterministically recover m by executing Dec on input
v. Viewing the encoding process as an individual building
block for the A-LWE-based encryption scheme yields a generic
approach to ensuring confidentiality and correct functionality
for Private Stream Aggregation.

B. Our Contributions

Summarizing, we define a generic A-LWE-based PSA scheme
that provides both security and privacy guarantees while allow-
ing for a flexible choice of privacy-preserving noise and where
any (additively) homomorphic encryption scheme can be read-
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ily deployed in a plug-and-play manner. Our contributions are
as follows:

• Resolve open problem from [40]. We provide a practical
solution to the plaintext length restriction that was left
as an open problem in [40]. Leveraging the efficiency
of the A-LWE hardness assumption, our construction
achieves the same differential privacy guarantees as [40]
and stronger security guarantees while maintaining high
bandwidth efficiency.

• Post-quantum security and tight reduction. We achieve
provable post-quantum security thanks to the use of
schemes based on A-LWE and therefore worst-case lattice
problems. Note that since A-LWE reduces seamlessly
from LWE, we do not require expensive reductions that
would result in large parameters and consequently de-
creased efficiency.

• Generic PSA scheme. We define “LaPS”, a generic
PSA scheme that allows for a flexible choice of noise
distribution to preserve privacy and accounts for future
improvements in homomorphic encryption. In particular,
our scheme can work with any current or future addi-
tively homomorphic semantically secure scheme where
the addition of ciphertexts corresponds to the addition of
plaintexts1.

• No need for encrypt-once model. We eliminate the
“encrypt-once” model required in previous works [40],
[42], where part of the scheme’s public parameters is used
to generate fresh randomness for encryption and it can
only be used once in order to ensure secure encryption.
Hence, this parameter has to be replaced for each new
round of encryption. Our construction inherently guar-
antees semantic security of the ciphertext and it allows
for secure reuse of all public parameters. Note that our
scheme can be easily adapted to comply with the encrypt-
once paradigm, if desired.

• Concrete instantiation using BGV and the discrete
Laplace mechanism. We provide a concrete instantiation
of our scheme, where we utilize the discrete variant of
the commonly utilized Laplace mechanism and a reduced
version of the homomorphic encryption scheme BGV
adapted from [9].

• Implementation with improved efficiency. To the best
of our knowledge, we provide the first implementation
of a lattice-based PSA scheme. In doing so, our exper-
imental results show high efficiency and compactness.
Our reduced version of BGV results in significant per-
formance advantages due to the fact that we do not
require homomorphic multiplication in our aggregation
scheme. Concretely, the runtime of our decryption routine
improves over previous results, i.e. [40], by a factor of 150
and the parameter magnitudes are reduced by several
orders of magnitude compared to [9].

1Note that several additive homomorphic schemes (e.g., Paillier, Discrete-
logarithm as proposed in [40]) do not comply with this requirement and
therefore cannot be simply plugged into our construction.

C. Applications

Private-Stream Aggregation has a large set of applications as
discussed in [40]. We mentioned the healthcare scenario in
the introduction in order to illustrate one such use case but
there are many more applications that can benefit from privacy-
preserving techniques in order to compute aggregates over
sensitive data: for instance smart meters, aggregation of sensor
data, research surveys, cloud services and advertising.

Remark 1: We would like to point out that the idea of
basing a PSA scheme on LWE is not new: Valovich [42]
introduces an LWE-based PSA scheme, which due to a clever
variation of the LWE problem utilizes the noise induced by
encryption for privacy purposes. Therefore, in contrast to our
scheme, both privacy and security are addressed in one shot.
This PSA scheme also allows for a higher plaintext length
compared to Shi et al. [40]. However, in order to establish
hardness of the utilized LWE-variant, one has to resort to
a reduction using the lossy code construction from Döttling
and Müller-Quade [12], which places significant constraints
on the LWE-parameters resulting in a significant decrease
in efficiency. While this efficiency gap could be usually
compensated by moving into the ring setting (i.e. reducing
to ring-LWE instead of regular LWE) this particular variant
does not seem to translate into the ring setting as the authors
remark [42]. Hence, it is unclear how efficiently this scheme
could be implemented in practice. On a more formal note, the
aforementioned reduction technique also affects the tightness
of the reduction from worst-case lattice problems resulting in
a slightly more loose connection to lattice problems. Since we
base security of our scheme directly on LWE, our parameters
do not suffer from these limitations and our scheme translates
into the ring setting in a straightforward manner. As we show
in our experimental results we are therefore able to leverage
the efficiency boost from the ring-adaptation.

Overview: The remainder of this work is organized as follows.
We discuss related work in Section II and introduce notation
and definitions in Section III before proposing our generic
PSA scheme LaPS in Section IV. We present an example
instantiation by first covering the individual building blocks
of the scheme in Section V-A and V-B and subsequently
describing the details of the complete construction in Section
V-C. Section VI evaluates the practical performance of our
scheme including runtime results. Finally, we discuss some
possible extensions to our scheme in Section VII.

II. RELATED WORK

We have already mentioned the seminal work of [40]. Jung et
al. [26] also propose a Diffie-Hellman based PSA scheme that
is somewhat more general than Shi et al.’s [40] as it allows for
the evaluation of a general multi-variate polynomial function.
However the same limitations as [40] also apply here due to
the underlying reliance on DDH.

The question of dynamic joins and leaves, e.g. due to
user failures, was first addressed by Chan et al. [8], whose
solution we briefly describe in Section VII, but incurs a high
aggregation error, which impacts the accuracy of the result. In
an effort to minimize the accumulated aggregation error, Li and
Cao [29] have each user add very small amounts of noise and
order the participants in an interleaved ring structure such that
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only a subset of users have to update their cryptographic key
when the number of active participants changes due to leaves
or joins. However, the resulting communication cost is higher
compared to [8] and therefore creates a trade-off between
accuracy and communication cost. In contrast, our scheme
does not incur such a trade-off. Additionally, Li and Cao’s [29]
scheme (and its extension to computing the minimum in [30])
relies on symmetric-key cryptography.

A. Local Differential Privacy

The concept of local differential privacy is a term that
is originally found in the data mining and learning theory
literature2, see e.g. [27], and was later formalized in the
differential privacy context in [13]. It captures the essence of
guaranteeing differential privacy in the distributed setting, i.e.
multiple data sources, without the need for a single trusted
entity. Instead a differentially private version of the data is
created locally at the data owner’s end (in our case the
user) before any statistical operations are performed. In that
sense, PSA schemes, including ours and previous constructions
such as [40], provide local differential privacy for the special
application case of aggregation. Note that PSA schemes are
somewhat special in that they combine differential privacy
techniques with cryptographic means like encryption in order
to achieve this goal. Therefore, different from other works in
the area of local differential privacy, PSA schemes provide
both privacy and security guarantees, as we discuss in detail
below.

The RAPPOR technique that was first introduced by Er-
lingsson et al. [17] uses randomized response techniques in
order to provide local differential privacy for frequency esti-
mation. More concretely, the goal is to compute the number of
occurrences of certain statistical attributes over a population of
users, e.g. settings in users’ browsers. The attributes, which are
composed of fixed strings, are represented by binary vectors,
i.e. each element being a predicate indicating the presence
or absence of the corresponding attribute, and it is locally
encoded using Bloom filters. The resulting output corresponds
to the user’s randomized response and is differentially private.
Each user’s response is subsequently shared with a central
server, where the desired frequencies over all user strings
are decoded using a combination of hypotheses testing, least-
squares solving and LASSO regression.

RAPPOR provides privacy through a purely client-based
construction and does not require a trusted third party, in
contrast to our solution where we assume a trusted setup
(see Remark 2). While their construction includes an in-depth
formal analysis of the differential privacy guarantees, it is
unclear to which extent security is guaranteed by the Bloom
filters. To date no attack is known against the RAPPOR con-
struction, however a number of attacks on other Bloom-filter
based constructions have been proposed in the literature, e.g.
an attack on a Bloom-filter based privacy-preserving record
linkage system [36] or a denial-of-service attack on network
protocols for packet forwarding exploiting information leaked
from Bloom filters [1].

2Note that earlier related work on randomized response goes back to 1965,
i.e. [44], but was not termed as “locally” private then.

Observe that RAPPOR’s attack model (see Section 6 in
[17]) considers the privacy implications of information that
is leaked from a user’s report. Our construction eliminates
the concern of information leakage from users’ outputs as
each user data point is encrypted. Furthermore, our scheme is
equipped with formal security proofs based on known hardness
assumptions. In fact, our example instantiation provides a
particularly strong security guarantee, namely post-quantum
security.

Lastly, although RAPPOR can be extended to numeric
user data, it is optimized for categorical input data based
on the specific use case of frequency estimation. For in-
stance, randomized response was specifically chosen over other
privacy mechanisms, such as the Laplace mechanism, due
to this application focus as indicated in [17]. As a result,
the input has to be a binary vector representing predicates.
Therefore, instantiating RAPPOR for numeric inputs, requires
the predicates to be formulated as ranges up to the desired
numeric value. For the particular case of computing the sum
of user values, a fine-grained distinction would be needed
in order to allow for accurate representation of all possible
values. Consequently, this may result in a large expansion
of the input for larger numbers. In contrast, our construction
handles numeric plaintext values in a straightforward way
using encryption in addition to allowing for a flexible choice
of privacy mechanism.

B. Multi-Party Computation (MPC) and Fully-Homomorphic
Encryption (FHE)

MPC is a well-studied field of research [45], [46], [22] (for an
overview see e.g. [23]): the idea is to perform computations in
a distributed manner, i.e. among N equal parties. Informally,
every user is supposed to learn the output of the computation
but no individual input should be known to anyone but the
providing user herself.

For the special application to smart metering, Danezis et
al. [10] introduce a PSA scheme that extends the aggrega-
tion capability to the computation of non-linear aggregation
functions using secret sharing and MPC-techniques. Their
underlying assumption is the existence of a set of trusted
authorities that work together in order to compute the desired
output while intermediate results remain private. The user
distributes shares of her individual value to multiple author-
ities who can compute linear aggregation functions on their
local share before combining them into the output aggregate.
The computation of non-linear functions, however, requires
interaction among the involved parties that may increase to
several rounds of communication with higher complexity of
the desired aggregation operation. In contrast, our scheme
is non-interactive and does not require an additional set of
trusted parties. However, our scheme only supports addition
operations.

Different from the PSA case, traditional MPC protocols
are initially not designed to have an aggregating party and
consequently tackle a conceptually different problem. Using
threshold fully homomorphic encryption (TFHE) schemes like
the one proposed by Asharov et al. [3] one may nevertheless
apply MPC-protocols to PSA in the following way: in the
original TFHE MPC-protocol each of the N users initially
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holds a secret and a public key share and after two rounds
of key generation the public key shares are combined into a
common public encryption key. They rely on a combination of
LWE-based encryption and the FHE schemes of Brakerski et
al. [5], [4] in order to achieve homomorphic operations on
the resulting ciphertexts. Hence, by tweaking Asharov et al.’s
TFHE scheme in order to fit the PSA setting, one would define
an aggregator in the following way: one party would simply
receive the combined secret key, i.e. the sum of the user’s
individual secret key shares, which allows for the decryption
of any ciphertext that is computed as a function, e.g. the sum,
of input ciphertexts from any of the N users.

However, this approach has the following limitations: first,
in the PSA setting we require that the aggregator does not
learn anything but the aggregate output that is computed as
a function of all users’ inputs [40]. Using the TFHE scheme,
the aggregator would be able to decrypt ciphertexts that are
built from a subset of the N users’ ciphertexts, i.e. also
individual ciphertexts, and therefore retrieve individual user’s
input values. Furthermore, the encryption scheme in [3] is
based on Regev’s construction [39], which only allows for the
encryption of a single bit. Hence, even if the TFHE setting is
redefined to satisfy the security requirements of a regular PSA
scheme, the plaintext space is still very limited. In contrast, our
scheme leverages an A-LWE-based encryption scheme, which
extends the available plaintext space and allows for significant
efficiency improvements while guaranteeing security in the
PSA sense.

C. Augmented Learning With Errors

Regev [39] introduced the Learning With Error (LWE) prob-
lem, which is appreciated both for its mathematical simplicity
and powerful connection to lattice problems. Regev showed
that LWE is as hard as certain lattice problems in the worst
case, therefore it is considered post-quantum secure. As a novel
hardness assumption it has served as the basis for a myriad
of new cryptographic constructions: from encryption schemes
[39], [32], [5], [31], [33] over key-exchange protocols [28],
[11] to oblivious transfer techniques [38].

In order to realize the security guarantees of a PSA
scheme the utilization of encryption is essential. As mentioned
previously LWE has a number of advantages over other
hardness assumptions in this context. However, we would
like to point out that there exist several LWE-variants, whose
choice impacts the practicality of the resulting PSA-scheme:
for instance using regular LWE as defined in [39] together
with Regev-style encryption would also yield post-quantum
secure PSA but would restrict the plaintext to one bit. The
corresponding multi-bit version [38] and other LWE-based
constructions (e.g. [31]) are also limited in terms of efficiency.
Observe that most LWE-based encryption schemes use a one-
time-pad-like technique for encryption, where LWE-equations
constitute the pad. El Bansarkhani et al. [16] were the first
to leverage LWE’s error-term in order to hide the message
and therefore propose a conceptually new way of encryp-
tion. Hence, the plaintext size can be significantly increased,
which yields critical improvement in bandwidth efficiency. The
decryption engine within the resulting encryption scheme is
also particularly efficient compared to previous LWE-based
schemes [16]. Furthermore, the problem is as hard as LWE

without major parameter restrictions and the reduction from
worst-case lattice problems remains as tight as in [39]. Hence,
there is no security-efficiency trade-off.

Therefore, although LaPS could have been defined using
for instance Regev’s LWE-based encryption scheme, we chose
El Bansarkhani et al.’s [16] LWE-version, namely A-LWE,
and the corresponding encryption scheme in order to optimize
bandwidth and overall efficiency of the resulting PSA scheme.

Lyubashevksy et al.’s [32] introduction of the Ring-LWE
problem, which is the counterpart to Regev’s LWE in the ring
setting, created an especially compact construction based on
the hardness of worst-case problems on ideal lattices. Conse-
quently, it is generally considered the most efficient variant
of LWE and most constructions are implemented in the ring
setting in practice in order to leverage this efficiency advantage
in practice. Following standard practice in the literature around
LWE (see e.g. [31], [34]) we also first present our generic PSA
scheme based on the generalized A-LWE hardness assumption
and instantiate a concrete example in the ring setting, i.e. based
on Ring-A-LWE, which we also use for our implementation.

III. PRELIMINARIES

A. Notation

We denote vectors and matrices using bold lower-case and
upper-case letters, respectively. We denote drawing a variable
v uniformly at random from some distribution D by v $← D.
log denotes the logarithm base 2 and ln denotes the natu-
ral logarithm. The exponential function is denoted by exp.
⊗ denotes the Kronecker product of two matrices. The l1-
norm of a database D is denoted ‖D‖1 and is defined as
‖D‖1 =

∑|D|
i=1 |Di|, where D denotes the universe of records

according to [14]. Note that we abbreviate “generalized” by
“gen.” in our definitions.

B. Differential Privacy

We first restate a few standard notions from the differential
privacy literature before providing more notions that we will
use in our construction.

Definition 1 (Distance between databases [14]): The l1
distance between two databases D0 and D1 is ‖D0 − D1‖1.
Two databases D0 and D1 are adjacent if and only if
‖D0 −D1‖1 ≤ 1.

Definition 2 (Differential Privacy (DP)[14]): A random-
ized algorithm M with domain Dn and range Rk is (ε, δ)-
differentially private if for all adjacent databases D0, D1 and
for all R ⊆ Rk: Pr[M(D0) ∈ R] ≤ exp(ε) Pr[M(D1) ∈
R] + δ, where the probability space is over the coin flips of
the mechanism M. If δ = 0, we say that M is ε-DP.

Definition 3 (Accuracy [41]): The output of a mechanism
M achieves (α, β)-accuracy for a query f : Dn → Rk if for
all D ∈ Dn: Pr[|M(D)−f(D)| ≤ α] ≥ 1−β. The probability
space is defined over the randomness of M.

We use the discretized version of the common Laplace mech-
anism in order to preserve privacy. We restate the definition of
the underlying discrete distribution below.
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Definition 4 (Discrete Laplace (DLap) [24]): The
discrete Laplace (DLap) distribution with scale ς > 1
and parameter p = exp(−1/ς) ∈ (0, 1) is the distribution
supported on Z with probability mass function

DLapς(x) =
1− p
1 + p

p|x| =
1− exp (− 1

ς )

1 + exp (− 1
ς )

exp
(
− |x|

ς

)
.

C. Private Stream Aggregation

We start by recalling the main Private Stream Aggregation
definition by Shi et al. [40].

Definition 5 (Private Stream Aggregation (PSA) Scheme [40]):
Let [n] := {1, 2, . . . , n} be the set of users participating in
the aggregation each holding values from some domain D.
Let f : Dn → R be an aggregation function with some range
R. Let χ : D × Ω → D denote some randomization function
that adds the two input values from D and Ω, where Ω is
some sample space of the randomization noise. Let T be the
set of time steps used throughout execution. A PSA scheme
consists of the following PPT-algorithms:

• (param, {ski}, skA) ← Setup(1κ): Takes in a security
parameter κ and outputs public parameters param, a
private key ski for each participant, as well as an aggre-
gator capability skA needed for decryption of aggregate
statistics in each time step t ∈ T . Each participant i
obtains the private key ski and the data aggregator obtains
the capability skA.

• ci,t ← NoisyEnci(param, ski, t, d, r): During time step t,
each participant calls the NoisyEnci algorithm to encode
its data d with noise r. The result is a noisy encryption c
of d randomized with the noise r.

• f(x) ← AggrDec(param, skA, t, c1,t, c2,t, . . . , cn,t): The
decryption algorithm takes in the public parameters
param, a capability skA, and ciphertexts c1,t, c2,t, . . . , cn,t
for the same time step t. For each i ∈ [n], let ci,t =
NoisyEnci(ski, t, xi), where each xi := χ(di, ri) for
some randomization function χ. Let d := (d1, . . . , dn)
and x = (x1, . . . , xn). The decryption algorithm outputs
f(x) which is a noisy version of the targeted statistics
f(d).

In our definitions we sometimes abuse notation and only
require the user to input her raw value d to NoisyEnc (as
opposed to both d and r), when noise r is generated within the
routine. Furthermore, we simplified notation by omitting the
time-step t in indices. The original notation from Definition 5
is mainly useful in adopting the corresponding security notion
of aggregator obliviousness, which was also introduced in [40].

Definition 6 (Aggregator Obliviousness [40]): A PSA
scheme is aggregator oblivious if no PPT adversary has more
than negligible advantage in κ in winning the following
security game:

Setup. Challenger runs the Setup algorithm, returns the
public parameters param to the adversary.

Queries. The adversary makes the following types of
queries adaptively.

◦ Encrypt. The adversary may specify (i, d, r) and
ask for the ciphertext. The challenger returns the
ciphertext
NoisyEnci(param, ski, t, d, r) to the adversary.

◦ Compromise. The adversary specifies an integer
i ∈ {0, . . . , n}. If i = 0, the challenger returns the
aggregator’s decryption key skA to the adversary. If
i 6= 0, the challenger returns ski, the secret key of
the ith participant, to the adversary.

◦ Challenge. This query can only be made once
throughout the game. The adversary specifies a set
of participants U and a time t, such that i ∈ U has
not been previously compromised.
For each user i ∈ U the adversary chooses two
plaintext-noise pairs (di, ri) and (d′i, r

′
i) and sends

them to the challenger. The challenger flips a random
bit b. If b = 0, the challenger computes ∀i ∈
U : ci = NoisyEnci(param, ski, t, di, ri). If b = 1,
∀i ∈ U : ci = NoisyEnci(param, ski, t, d

′
i, r
′
i) and

returns {ci} to the adversary.

Guess. The adversary guesses, whether b is 0 or 1.

We say that the adversary wins the game if she correctly
guesses b and if she compromised the aggregator (i.e. possesses
the decryption key skA,) then

∑
i∈U di + ri =

∑
i∈U d

′
i + r′i

must hold.

Note that if the aggregator colludes with a subset of the
participants or is leaked some of the plaintexts3, then he
can inevitably learn the sum of the remaining participants’
values. We require that in this case the aggregator learns no
additional information about these participants’ data. However,
this requirement is achieved by the privacy guarantees of the
scheme.

D. LWE and Gaussian Distribution

A Learning With Error (LWE) term consists of the coefficient
matrix A and the vector b = sTA + eT , where the elements
of A ∈ Zκ×λq and the secret s ∈ Zκq are sampled uniformly at
random from the q-ary field. The error term e ∈ Zλq is sampled
according to a discretized Gaussian distribution. Given only
(A,b) it is hard to recover s or e. In fact, the hardness
of the LWE problem can be reduced from worst-case lattice
problems, even for the decision LWE problem [37].

After the introduction of the LWE problem in [39] a multi-
tude of LWE-based cryptographic applications have emerged.
The need for more efficient cryptographic schemes lead to
the definition of several LWE-variants, which would allow
for more practical implementation. While most of these vari-
ants typically come at the cost of some security relaxation,
El Bansarkhani et al. [16] presented Augmented LWE (A-
LWE), which leverages the error term as a data container
and hence provides for very efficient and compact encryption
schemes.

An A-LWE term (A,bT ) consists of the matrix A and the
vector bT = sTA+eT , where s is the secret key and e is the
error term. e is sampled from the special Gaussian distribution

3This applies analogously to the adversary who compromises all the secret
keys (including the aggregator’s) but one.
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DΛ⊥
v (G),r that is indistinguishable from the regular discrete

Gaussian distribution used for standard LWE. The relation
between e and v is: Ge ≡ v mod q. Hence, given G and e,
one can efficiently recover v. This is essential to the idea of
message embedding that underlies the A-LWE concept, since a
message m is “baked into” v by producing v as an encoding
of m, such that v is indistinguishable from random.

We define a slightly more general variant of the A-LWE
problem than the original definition from El Bansarkhani et
al. [16], since we allow for any function f embedding the
message m such that v = f(m) as long as output v is indis-
tinguishable from random rather than requiring the particular
way v is generated in [16]. Note that in the following we refer
to the Gaussian parameter αq as σ for better readability. We
present the resulting definition below.

Definition 7 (Gen. A-LWE Distr. (adapt. from [16])): Let
κ, λ, q, l, x be integers, where l = dlog qe and λ = x · l. Let f
be some function where the output is indistinguishable
from random. Let gT = (1, 2, . . . , 2l−1) ∈ Zlq and

G = Iλ/l ⊗ gT ∈ Zλ/l×λq . For s
$← Zκq and A

$← Zκ×λq ,
define the A-LWE distribution LA-LWE

κ,λ,σ (m) with m ∈ Zq to be
the distribution over Zκ×λq × Zλq obtained as follows:

• Set v = f(m) ∈ Zλ/lq .

• Sample e← DΛ⊥
v (G),σ ∈ Zλq .

• Return (A,bT ) where bT = sTA + eT .

Definition 8 (Gen. decision A-LWE (adapt. from [16])):
Let κ, λ, q be integers. Let f be some function with pseudo-
random output. The decision A-LWEfκ,λ,σ problem asks
to distinguish in polynomial time (in κ) between samples
(Ai,b

T
i ) ← LA-LWE

κ,λ,σ (m) and uniform random samples from

Zκ×λq × Zλq for a secret s $← Zκq and some m ∈ Zq .
We say that decision A-LWEfκ,λ,σ is hard if all polynomial
time algorithms solve the decision A-LWEfκ,λ,σ problem only
with negligible probability.

In order to prove that security of the resulting ciphertext still
holds, we will need Lemma 1, which states that the distribution
of the A-LWE error term is indistinguishable from the discrete
Gaussian distribution under certain conditions.

Lemma 1 ([16]): Let M ∈ Za×bq be an arbitrary full-
rank matrix. If the distribution of v ∈ Zaq is computationally
indistinguishable from the uniform distribution over Zaq , then
DΛ⊥

v (M),r is computationally indistinguishable from DZb,r for
r ≥ ηε(Λ⊥(M)).

Finally, we utilize the following facts about Ring-LWE for our
example instantiation.

Definition 9 (Ring-LWE [6]): For all κ ∈ N, let f(x) =
fκ(x) ∈ Z[X] be a polynomial of degree n = n(κ), let
q = q(κ) ∈ Z be a prime integer, let t = t(κ) ∈ Z∗q (thus t
and q are relatively prime), let the ring R = Z[X]/〈f(X)〉 and
Rq = r/qR, and let χ denote a distribution over the ring R.
The decision Ring-LWE problem asks to distinguish in polyno-
mial time (in κ) between any l = poly(κ) samples (ai, ai · s+
t ·ei)i∈[l] and l uniform random samples from Rq×Rq , where
s is sampled from the error distribution χ, ai are uniform in

Rq and the error polynomials ei are sampled from the error
distribution χ.

IV. GENERIC PSA-SCHEME

Prior work on PSA-schemes considers the use of homomorphic
encryption problematic, since it is usually designed for a single
decryption key and thus the aggregator does not only learn the
aggregate but also the individual users’ values, which is clearly
undesirable. We circumvent this dilemma by embedding a
homomorphic encryption scheme inside the A-LWE-based PSA
scheme. At a high level the user’s plaintext is encrypted into
an additively homomorphic ciphertext and it is subsequently
wrapped into an A-LWE term, which yields the final ciphertext
released to the aggregator. Receiving all ciphertexts the aggre-
gator’s first decryption key is designed in such a way that it
only allows for correct decryption of the sum of the ciphertexts.
Using this key, she can successfully lift the outer “layer of
encryption”, i.e. unveil the inner homomorphic ciphertext. Her
second decryption key then allows for decryption and recovery
of the summed plaintext. Note that the aggregator still learns
nothing more than the noisy sum: since she can only lift the
first layer by summing the ciphertexts together, the “inner”
ciphertexts are also summed and the recovered plaintext is
automatically summed as well.

Zooming in on the technical details, a ciphertext in our
scheme is an A-LWE term (A,bT ) as presented in Defini-
tion 8: it consists of the matrix A, which in our case is
distributed as part of the public parameters, and the vector
bT = sTA + eT , with s being the secret key and e the
error term. Recall that e is sampled from distribution DΛ⊥

v (G),r

where v is the encoding of the plaintext message m. We can
recover the message using the gadget matrix G, which is also
part of the public parameters in our scheme, using the relation
Ge ≡ v mod q.

Our generalized version of the A-LWE problem according
to Definition 8 allows for any encoding function as long as
the output v is indistinguishable from random. Requiring that
the function be additively homomorphic guarantees the correct
format for our PSA scheme and regarding it as the encryption
routine AHOM.Enc of a scheme AHOM = (Gen,Enc,Dec)
with pseudo-random ciphertexts ensures pseudo-randomness
of the output v.

As a result we get the “layering” approach described above:
after adding privacy-preserving noise ri to user i’s database
value di, i.e. xi = di + ri mod q, xi is encrypted using
the additively homomorphic routine AHOM.Enc (under the
public key pk generated from AHOM.Gen), which outputs the
ciphertext vi. vi is then used to sample ei, which finally is
wrapped into the A-LWE term ci,A = sTi A + ei. ci,A is the
output ciphertext.

The definition of the aggregator’s decryption key skA1

ensures that the process can only be reversed for the sum
of the ciphertexts from all participants. Recall that the secret
si within each ciphertext ci,A is the user’s individual secret
encryption key and unknown to the aggregator. Therefore,
summing N ciphertexts yields a new ciphertext whose secret
is the sum of all N secrets. Therefore, skA1

is defined as the
negative sum over all secrets, such that adding skTA1

A to the
new ciphertexts lifts the “secret mask” and recovers the sum of
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the error terms ei. In order to uncover the sum of the vi’s, i.e.
the inner ciphertexts, we multiply by matrix G utilizing the
special property of the error term in A-LWE. In a last step the
sum of the xi’s, i.e. the encrypted messages, is “de-packaged”
by invoking AHOM.Dec with the second decryption key skA2

that was generated by AHOM.Gen in the Setup phase.

Note that El Bansarkhani et al.’s generic encryption scheme
relies on a trapdoor construction in order to retrieve both error
and secret from a given A-LWE-term in the decryption process.
As the authors note, this is the most computationally intensive
operation of the scheme, therefore the overall efficiency corre-
sponds to the efficiency of executing the trapdoor inversion. In
our construction we do not need to rely on expensive trapdoor
algorithms since the secret mask is lifted with a single addition
due to the nature (inverse of sum of secrets) of the aggregator’s
secret decryption key.

In the following we first present the formal definition of
our generic A-LWE-based PSA Scheme LaPS and then analyze
correctness, security and privacy properties.

Algorithm 1 Algorithm Sample to sample from Λ⊥(gT ) [16]

Input: gT ∈ Zlq, w ∈ Zq, r
Output: t = (t0, . . . , tl−1)T ∈ Λ⊥w(gT ) distributed according

to DΛ⊥
w(gT ),r

a0 := w
for j = 0, . . . , l − 1 do

tj ← D2Z+aj ,r

aj+1 = (aj − tj)/2
end for

Definition 10 (Lattice-based PSA (LaPS)): Let κ be a se-
curity parameter, N ∈ N the number of participants and let
α ∈ (0, 1) and β ∈ (0, 1]. Let χ be a discrete noise distribution.
Let AHOM = (Gen,Enc,Dec) be an asymmetric encryption
scheme with pseudo-random ciphertexts that is additively ho-
momorphic, i.e. AHOM.Dec(sk,

∑N
i=1 AHOM.Enc(pk,mi))

= AHOM.Dec(sk,AHOM.Enc(pk,
∑N
i=1mi)).

A post-quantum secure Private Stream Aggregation scheme
PQ-SPA = (Setup, NoisyEnc, AggrDec) consists of the
following PPT-algorithms:

• ({A,gT , pk}, {si}, (skA1
, skA2

)) ← Setup(1κ): Gener-
ate the public parameters A, gT and pk as follows and
distribute them to all parties.
◦ Draw A uniformly at random from Zκ×λq , where l =
dlog qe and λ = x · l for some positive integer x.

◦ Set vector gT = (1, 2, . . . , 2l−1) ∈ Zlq .
◦ Generate (pk, sk)← AHOM.Gen and extract public

key pk ∈ (pk, sk).
For all i ∈ {1, . . . , N} draw si ← Zκq and send it to user
i as her secret key.
The aggregator’s secret decryption key is the tuple (skA1

,
skA2), where
◦ skA1

= −
∑N
i=1 si and

◦ skA2
= sk ∈ (pk, sk)← AHOM.Gen.

• ci,A ← NoisyEnci({A,gT , pk}, si, di): Each user i takes
her data di,A ∈ D and adds some noise ri to it, s.t. xi =
di + ri mod q ∈ Zq .

◦ ri is sampled as follows:

ri =

{
0 with probability 1− β
Y with probability β

, where Y ← χ.

◦ Compute vi = AHOM.Enc(pk, xi) ∈ Zλ/lq .
◦ Invoke Algorithm 1 for each component of vi in

order to sample ei ← DΛ⊥
vi

(G),σ ∈ Zλq , i.e. ei =

(Sample(gT , vi1 , σ), . . . , Sample(gT , viλ/l , σ)).
Output the ciphertext ci,A = sTi A + eTi ∈ Zλq .

•
∑N
i=1 xi ← AggrDec({A,gT }, (skA1

, skA2
), {c1,A, . . . ,

cN,A}): Receiving the users’ ciphertexts {ci} the aggre-
gator computes c =

∑N
i=1 ci,A.

◦ Compute e =
∑N
i=1 e

T
i = c + skTA1

A.
The aggregator retrieves the noisy sum of the users’ values
via

N∑
i=1

xi = AHOM.Dec(skA2 ,G · e mod q),

where G = Iλ/l ⊗ gT ∈ Zλ/l×λq .

Note that in previous work ([40], [42]) the users’ communica-
tion was partitioned into individual time-steps t (see Definition
5). Hence, each round of ciphertexts to be aggregated would
be associated with a new time-share. While for instance Shi et
al. imposes this encrypt-once model for security reasons, since
each new time-step is used to generate fresh randomness for
encryption, our scheme is not dependent on separating each
round of communication. Therefore we use a single public
matrix A that can be reused throughout the scheme. How-
ever, should an application require identifiable time-steps, our
scheme can be extended in a straightforward way by generating
a set of matrices (A1

$← Zκ×λq , . . . ,At
$← Zκ×λq ) where t is

the number of time-steps during Setup and distributing these
to each user. Note that this can be implemented in a memory-
conserving manner by only storing a seed that is sufficient to
generate each matrix Ai on-the-fly. All security definitions and
proofs throughout this work can be extended, accordingly.

We give general security and privacy guarantees with
only minimal assumptions on the respective properties of
the used building blocks. Concretely, security of the overall
PSA scheme requires semantic security with pseudo-random
ciphertexts of the embedded homomorphic encryption scheme
and (ε, δ)-differential privacy of the final output assumes ε-
differential privacy of the utilized privacy mechanism.

Correctness: Note that G · ei mod q = vi, where
ei ← DΛ⊥

vi
(G),σ . Therefore, the input to AHOM.Dec

in the AggrDec routine is
∑N
i=1 vi. Hence, as long as

AHOM.Dec(
∑N
i=1 vi) =

∑N
i=1 xi, the aggregator indeed

outputs the noisy sum aggregate of the users’ values. This is the
case by construction, since we require AHOM to be additively
homomorphic and therefore the sum of the homomorphic
ciphertexts v =

∑N
i=1 vi corresponds to an encryption of the

sum of the underlying plaintexts xi.

Security: We state security of our scheme as follows:

Theorem 1 (Semantic Security): Let the output
of AHOM.Enc be indistinguishable from random.
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Then, the ciphertexts generated by NoisyEnc in LaPS
according to Definition 10 are semantically secure for
σ ≥ 2

√
κ ≥ 2 ·

√
ln(2n(1 + 1/ε))/π assuming the hardness

of worst case lattice problems.

Proof: First, note that due to the above assumption, vi
is indistinguishable from random. Furthermore, the smooth-
ing parameter ηε(Λ

⊥
q (G)) can be bounded from above

using4 Lemma 2.6 in [20] resulting in ηε(Λ
⊥
q (G)) ≤

2 ·
√

ln(2n(1 + 1/ε))/π. Therefore, by construction σ ≥
ηε(Λ

⊥
q (G)) and Lemma 1 can be applied to matrix G.

Then, DΛ⊥
vi

(G),σ correctly simulates the discrete Gaussian
distribution DZλ,σ and the ciphertexts ci represent plain A-
LWEκ,λ,σ samples. Note that in the remainder of this section
we assume that σ and κ are set such that Lemma 1 applies
and avoid restating the corresponding parameter restriction for
better readability.

Therefore, the statement follows immediately from the
hardness of decision A-LWEfκ,λ,σ: A-LWE samples are indistin-
guishable from LWEκ,λ,σ samples due to [16]. Finally, A-LWE-
samples are indistinguishable from uniform samples based on
the hardness of worst-case lattice problems due to [39].

The notion of aggregator obliviousness focuses on the ag-
gregator’s decryption capability: intuitively, it captures the
requirement that the aggregator cannot learn anything from the
participants’ ciphertexts but the noisy sum, i.e. the aggregate.
This also entails that retrieving the aggregate is not possible
without the aggregator’s decryption key. We present the formal
statement of aggregator obliviousness security of our generic
scheme in the following theorem.

Theorem 2 (Aggregator Obliviousness Security): Let the
output of AHOM.Enc be indistinguishable from random and let
σ ≥ 2

√
κ. LaPS according to Definition 10 satisfies aggregator

oblivious security assuming the hardness of worst case lattice
problems.

Proof: See Appendix.

Privacy: Adding appropriately distributed noise to the users’
raw values before encrypting them, constitutes a privacy mech-
anism and ensures the differential privacy of the aggregated
output. The concrete differential privacy parameters that can
be achieved are therefore entirely determined by the deployed
privacy building block.

Below we formalize the concrete relation and state (ε, δ)-
differential privacy of the aggregate output in terms of ε-
differential privacy of the deployed privacy mechanism.

Theorem 3 (Privacy): Let Mχ(D, f(·), ε) = f(D) +
(Z1, . . . , Zk) denote a mechanism for some function f : Dn →
Rk, where Zi are i.i.d. random variables drawn according to
some distribution χ.
If Mχ achieves ε-DP and f(D) =

∑n
i=1 di for D =

(d1, . . . , dn) is a sum query, then the aggregate output gen-
erated by the LaPS according to Definition 10 is (ε, δ)-DP
for β = min{ 1

γn ln 1
δ , 1}, where n denotes the number of

participants and γ is the fraction of honest participants.

4See Lemma 3 in [15] for a simplified version that is directly applied here.

Proof: The proof follows from [40, Lemma 1]5 when
substituting their Geometric mechanism by Mχ.

Remark 2 (Trusted Setup): Our construction assumes a
trusted setup as is customary for this type of PSA-protocol
(see for instance [40], [8]), where all users and the aggregator
are equipped with their respective secret keys as well as
public parameters that are necessary to perform the protocol.
In practice, this can be performed by executing the Setup
routine (see Definition 10) with a trusted third party. Note that
this is only needed once and no more interaction is required
throughout the remainder of the protocol. In fact, it can be
implemented in such a way that it does not need to be repeated
for a new round of the protocol, for instance by dealing out
multiple sets of secret key and other parameter information at
once in advance.
Alternatively, as pointed out in [40] one may resort to standard
secure MPC techniques in order to perform the setup in a
distributed manner.

V. EXAMPLE INSTANTIATION

Starting with our generic PSA scheme LaPS from Definition
10, we can now pick an additively homomorphic scheme and a
suitable privacy mechanism of our choice and construct an ex-
ample instantiation of our scheme. More concretely, we choose
a reduced version of the BGV scheme by Brakerski et al. [4]
as the homomorphic scheme and the discrete version of the
standard Laplace mechanism as the privacy mechanism.

In the following we first discuss these two components
individually as stand-alone building blocks before giving a
complete definition of the entire PSA scheme that results from
embedding them into our generic scheme.

As mentioned previously, we use a Ring-A-LWE-based
instantiation for efficiency reasons. Since we will implement
our example scheme in Section VI, we already present our
definitions here in the ring setting.

A. Additively homomorphic encryption: BGV

Originally introduced in [5], the BGV scheme was used by
Damgård et al. [9] in the context of MPC. In this paper, we
adapt their particular notation due to the fact that the original
scheme is defined on binary bits and we are interested in a
larger plaintext space. This also allows us to adopt their proof
of correctness in a straightforward way.

Observe that we make several modifications to the for-
mulation of the BGV-scheme in [9] for two major reasons.
First of all, we do not require homomorphic multiplication:
as we focus on sum aggregation we only need an additive
homomorphism. Technically, this relaxes the requirement to
a somewhat homomorphic encryption scheme. As a positive
side effect, the scheme can be greatly simplified (eliminating
parts such as key-switching) and efficiency is significantly
improved, since multiplication is the most computationally
intensive operation. Secondly, we do not generate the keys in
a distributed manner as would be required for the MPC setting

5Note that in [40] the term distributed differential privacy is specifically
coined for PSA schemes, since the privacy-preserving noise is generated in a
distributed manner. For simplicity, we abuse notation and refer to “differential
privacy”.
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in [9]. This affects the used distributions and the magnitudes
of the resulting values. Furthermore, in order to optimize the
parameter magnitudes we use the well-known reduction by
Applebaum et al. [2] that lets us securely sample the secret in
the R-LWE term from the error distribution as opposed to the
uniform distribution.

We define the following subroutines as in [9]:
- ZO(0.5, n): Generate a vector of length n with elements

chosen at random from {−1, 0, 1} such that the probabil-
ities for each coefficient are p−1 = 1

4 , p0 = 1
2 , p1 = 1

4 .

- DG(σ′2, n): Generate a vector of length n with elements
chosen according to the discrete Gaussian distribution
with variance σ′2.

- RC(0.5, σ′2, n): Generate (v, e0, e1) where v is sam-
pled from ZO(0.5, n) and e0 and e1 are sampled from
DG(σ′2, n).

- U(q, n): Generate a vector of length n with elements
generated uniformly at random modulo q.

Observe that the BGV scheme uses modulus-switching in order
to keep the error that arises due to arithmetic operations
on ciphertexts in check. More concretely, given an input
ciphertext (e.g. the result of adding two ciphertexts) defined
with respect to some modulus q and the target modulus q′, the
SwitchModulus routine outputs a new ciphertext that is defined
modulo q′ but still encrypts the same underlying plaintext.

In contrast to the original definition, the SwitchModulus
routine that we use in our definition below is equivalent to
the function Scale in [19] as we do not explicitly perform an
error estimation before reducing the input ciphertext (, which
is part of the original SwitchModulus). Adopting Gentry et
al.’s definition in [19]: Scale(x, q, q′) takes an element x ∈
Rq and returns an element y ∈ Rq′ such that in coefficient
representation it holds that y ≡ x mod p and y is the closest
element to (q′/q) · x that satisfies this mod-p condition. For
a detailed description using evaluation representation refer to
Appendix D in [19]. Finally, our adapted scheme is defined as
follows.

Definition 11 (Adapted BGV [4], [9]): Let R =
Z[X]/Φm(X) and Rq = (Z/qZ)[X]/Φm(X) for some
cyclotomic polynomial Φm(X) and integer q, where φ(m)
is the degree of R over Z. Let σ′ be the Gaussian standard
deviation.
The plaintext space is Rp for some prime p and ciphertexts
are tuples in Rq1 ×Rq1 , which get reduced (in the decryption
process) to tuples in Rq0 ×Rq0 for the two moduli q0 and q1.
Set q0, q1 such that q0 = p0 and q1 = p0 · p1 for some primes
p0, p1, where q0, q1 > p.

• BGV.Gen: Generate a ← U(q1, φ(m)). Draw s, ε ←
DG(σ′2, φ(m)). Compute b = a · s + p · ε and output
(a, b) as the public key and s as the secret key.

• BGV.Enc(pk, µ ∈ Rp): Using modulus q1, choose a
“small” polynomial, i.e. with 0, ±1 coefficients, and
two polynomials with Gaussian coefficients (v, e0, e1)←
RC(0.5, σ′2, φ(m)). Then set c0 = b · v+ p · e0 +µ, c1 =
a·v+p·e1 and output ciphertext c = (c0, c1) ∈ Rq1×Rq1 .

• BGV.Dec(sk, c): For an input ciphertext c defined modulo
q1, invoke SwitchModulus(c, q1, q0), which produces a
new ciphertext c′ = (c′0, c

′
1) defined modulo q0 such that(

(c′0−s·c′1) mod q0 ≡ (c0−s·c1) mod q1

)
mod p.

Decryption of c′ is performed by setting m′ = (c′0−s ·c′1)
mod q0 and outputting m′ mod p.

Remark 3: For the remainder of this work we fix the
following parameter choice following [9]: Choosing m as a
power of 2 yields φ(m) = m/2. Select R = Z[X]/(Xm/2+1)

and p = 1 mod m, i.e. Rp ' Fm/2p and ring constant cm = 1.

In the remainder of this section, we state semantic security
and summarize the parameter requirements for correctness
and concrete bit-security levels. The proofs follow from [9]
with the necessary modifications for our BGV version. The
interested reader is referred to the Appendix for the proof
of correctness, which is more involved, and to the respective
exposition in [9] for more details.

Lemma 2 (BGV: Semantic Security): The BGV scheme
according to Definition 11 is semantically secure with pseudo-
random ciphertexts assuming the hardness of decision Ring-
LWE.

Proof: The proof follows from [9, Theorem 2] except that
in our case the secret key is not generated in a distributed
manner. Therefore we do not require the circular security
assumption. Note that the ciphertexts are simply Ring-LWE
samples and are thus indistinguishable from uniform samples
as long as decision Ring-LWE is hard.

Parametrization for correctness and security: Adopting
the analysis in [19], [9], the following inequality reflects the
correctness requirement

N ·Bclean
p1

+Bscale <
q0

2
=
p0

2
, (1)

where Bclean and Bscale are defined based on parameters
φ(m), p and σ′, see the Appendix for details.
Using the bit-security estimations from Lindner and Peikert
[31] we get the following security requirement for ring degree
φ(m), modulus q1 and Gaussian parameter σ′

φ(m) ≥ (k + 110) · ln(q1/σ
′)

7.2
, (2)

where k is the bit-security level.

B. Differential Privacy: Discrete Laplace Noise

Our second building block is a privacy mechanism that will
serve to ensure differential privacy of the output aggregate.
The (continuous) Laplace mechanism is a standard tool in
differential privacy literature. Since our scheme works in the
discrete world - as is common for cryptographic applications
- we define a discrete Laplace Mechanism, which nevertheless
provides the same differential privacy guarantees as we show
below.

Definition 12 (The discrete Laplace Mechanism): Given
any function f : Dn → Rk, the discrete Laplace mechanism
is defined as:

MDLap(D, f(·), ε) = f(D) + (Y1, . . . , Yk)
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where Yi are i.i.d. random variables drawn from DLapς where
ς = ∆f/ε.

Theorem 4 (DLap-Mechanism: ε-DP): The discrete
Laplace mechanism MDLap preserves ε-DP.

Proof: The proof follows a standard structure that is
common in differential privacy, see e.g. [14, Theorem 3.6]. In
fact, it is analogous to the widely known continuous version of
the Laplace mechanism with the exception of having a discrete
function and distribution range. For completeness, we present
the proof in the Appendix.

C. Putting it together

Finally, we assemble the example instantiation of our LaPS
scheme by plugging in the homomorphic scheme BGV de-
scribed in Section V-A and the privacy-preserving mechanism
from Section V-B into our generic Definition 10. As mentioned
above, we define the instantiation in the ring setting such
that the basis for our implementation in Section VI is clearly
formulated. In consequence, we first explain the details of the
underlying algebra before presenting the complete scheme and
stating the correctness and security properties.

We use several moduli for different parts of the scheme:
prime p is the plaintext modulus and q1 denotes the overall
ciphertext modulus. The decryption routine BGV.Dec within
AggrDec internally produces reduced ciphertexts with modulus
q0. Set moduli q0, q1 > p such that q0 = p0 and q1 = p0 · p1

for some primes p0, p1.

Based on these moduli we define the following rings: the
plaintext space Rp = (Z/pZ)[X]/Φm′(X), the internal key
and ciphertext space Rint = (Z/q1Z)[X]/Φm′(X) and the
external key and ciphertext space Rext = (Z/q1Z)[X]/Φm(X)
for some cyclotomic polynomials Φm(X) and Φm′(X). Inter-
nal ciphertexts are produced and processed by BGV routines
and external ciphertexts are the actual outputs and inputs of
the PSA scheme, i.e. the ciphertexts sent from the users to the
aggregator.

Set m′ to be a power of two and p s.t. p mod m′ ≡ 1, then
the degree of Rp and Rint is φ(m′) = m′

2 . Note that the only
difference between Rint and Rext is the dimension: namely
choose6 φ(m) s.t. φ(m) = 2 · φ(m′) · l, where l = dlog q1e.

Note that we must transform from Rext to Zq1 in order
to use Algorithm 1. For this purpose we define the following
mappings:
- z2Rq,m : Zq → Rq: takes a scalar x over the q-ary field

and produces a vector y = (x, 0, . . . , 0) of dimension
φ(m), where y is coefficient representation for the output
ring element.

- R2zq,m : Rq → Zq: takes a ring element and outputs the
first element of its coefficient representation.

- R2Zq,m : Rq → Zφ(m)
q : outputs a vector of size φ(m) by

copying the entries of the coefficient representation of the
input ring element.

6Note that with a small tweak to the described mappings Z2R and R2Z,
φ(m) can also be made larger than 2 · φ(m′) · l: simply add 0’s to the
coefficient representation to pad up to the desired length φ(m) in order to get
a ring element in Rext and cut the same number of 0’s when transforming
that ring element back to Z2·φ(m′)·l

q1 .

- Z2Rq,m : Zφ(m)
q → Rq: interprets the input vector as

the coefficient representation of a polynomial in Rq and
outputs the corresponding ring element.

In the following, observe that addition and multiplication
of ring elements is performed component-wise. For better
readability, we denote BGV-routine parameters and internal
ciphertexts with bars above the variable names.

Definition 13 (LaPS using DLap and BGV): Let κ be a
security parameter, N ∈ N the number of participants, γ the
fraction of uncompromised users and let ς > 1 and α ∈ (0, 1).
Fix the rings Rp, Rint and Rext with the corresponding
parameters p, p0, p1, q0, q1,m,m

′, l as described above. Let
κ = φ(m)/l.

• ({a,gT , pk}, {si}, (skA1
, skA2

))← Setup(1κ): Generate
the public parameters a, gT and pk as follows and
distribute them to all parties.
1) Draw a uniformly at random from Rext.
2) Set vector gT = (1, 2, . . . , 2l−1) ∈ Zlq1 .
3) Generate ((ā, b̄), s̄)← BGV.Gen and extract public

key pk as pk = (ā, b̄) ∈ Rint ×Rint.
4) For all i ∈ {1, . . . , N} draw si ← Rext and send it

to user i as her secret key.
5) The aggregator’s secret decryption key is the tuple

(skA1 , skA2), where
◦ skA1 = −

∑N
i=1 si and

◦ skA2
= s̄ ∈ ((ā, b̄), s̄)← BGV.Gen ∈ Rint.

• ci,a ← NoisyEnci({a,gT , pk}, si, di): Each user i takes
her data di,a ∈ D and adds some noise ri to it, s.t. xi =
di + ri mod p ∈ Zp.
1) ri is sampled as follows:

ri =

{
0 with probability 1− β
Y with probability β

,

where Y ← DLapς and β = 1
γN log( 1

δ ).
2) Set x̄i = z2Rp,m′(xi) ∈ Rp and compute c̄ =

(c̄0, c̄1)← BGV.Enc(pk, x̄i).
3) Set vi = (R2Zq1,m′(c̄0)||R2Zq1,m′(c̄1)) ∈ Z2·φ(m′)

q1 .
4) Invoke Algorithm 1 for each component of vi in

order to sample ei ← DΛ⊥
vi

(G),σ ∈ Z2·φ(m′)·l
q1 , i.e.

ei = (Sample(gT , vi1 , σ), . . ., Sample(gT , vi2φ(m′) ,
σ)).

5) Transform to the ring by ei = Z2Rq1,m(ei). Note
that since φ(m) = 2 · φ(m′) · l, ei ∈ Rext.

6) Output the ciphertext ci,a = a · si + ei ∈ Rext.

•
∑N
i=1 xi ← AggrDec({a,gT }, (skA1

, skA2
), {c1,a, . . . ,

cN,a}): Receiving the users’ ciphertexts {ci,a} the aggre-
gator computes c =

∑N
i=1 ci,a.

1) Compute e =
∑N
i=1 ei = c+ a · skA1

.
2) Set e = R2Zq1,m(e) ∈ Zφ(m)

q1 .
3) Compute v = G · e mod q1 ∈ Z2·φ(m′)

q1 , where

G = Iφ(m)/l ⊗ gT ∈ Z
φ(m)
l ×φ(m)

q1 .
Again, note that φ(m)/l = 2 · φ(m′) and that v is
the sum of the individual vi’s from NoisyEnci.

4) Parse v as a tuple of vectors v = (v′,v′′) ∈
Zφ(m′)
q1 × Zφ(m′)

q1 .
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5) Decrypt: x̄ = BGV.Dec(skA2
, (Z2R(v′),Z2R(v′′)))

∈ Rp. Note that x̄ is the sum of the individual x̄i’s
from NoisyEnci.

6) The aggregator retrieves the noisy sum of the users’
values with

∑N
i=1 xi = R2zp,m′(x̄) ∈ Zp.

D. Correctness, Security and Privacy

The scheme inherits the security and privacy guarantees of
our generic LaPS (see Section IV). Hence, we only need to
show that the requirements of essentially Inequality (1) for
correctness and Theorem 2 for aggregator obliviousness are
met.

Correctness: The correctness of the PSA scheme stems from
the correctness of the internal BGV scheme, since BGV.Dec
determines the correct retrieval of the users’ noisy sum. There-
fore, in order to ensure correct decryption AggrDec, Inequality
(1) must be satisfied with respect to Rint, i.e. fixing σ′ = 3.2
as in [19], [9]7

N ·Bclean
p1

+Bscale <
q0

2
=
p0

2
, (3)

where Bclean = φ(m′) · (p− 1) + 6.4p · ((8 + 4
√

2) · φ(m′) +
3 ·
√
φ(m′)) and Bscale = 1√

3
· p · (3 ·

√
φ(m′) + 3.2 ·φ(m′)).

Security: Below, we prove the security guarantees of our
scheme.

Theorem 5 (Semantic Security): Let σ′ ≥ ω(1), ε =
negl(κ). The ciphertexts generated by NoisyEnc in the PSA
scheme according to Definition 13 are semantically secure for
σ ≥ ω(

√
log(κ)) · (κN/ log(κN))

1
4 assuming the hardness of

worst case lattice problems.

Proof: Suppose, vi that is generated in NoisyEnc in Step
(3), is indistinguishable from random. Then, by Lemma 1
DΛ⊥

vi
(G),σ correctly simulates the discrete Gaussian distribu-

tion DZφ(m),σ for σ ≥ ηε(G).
Note that G = Iφ(m)/l ⊗ gT . Adopting El Bansarkhani et
al.’s [16] argumentation, G induces the lattice Λ⊥q1(G) =

{x ∈ Zφ(m)|Gx ≡ 0 mod q1} with generator matrix S =

Iφ(m)/l ⊗ Sl ∈ Zφ(m)/l×l
q1 , where

Sl =


2 0
−1 2

. . . . . .
0 −1 2

 ∈ Zl×lq1 .

Using Lemma 3 in [15] (derived from Lemma 2.6 in [20]),
which states an upper bound on the smoothing parame-
ter ηε(Λ) of a given lattice Λ and its basis, the smooth-
ing parameter ηε(Λ

⊥
q1) is bounded from above by ||S|| ·√

ln(2φ(m)
l (1 + 1

ε ))/π ≤ 2 ·
√
φ(m)/l. By definition κ =

φ(m)/l and hence ηε(Λ⊥q1) ≤ 2 ·
√
κ.

Consequently, Lemma 1 applies and the ciphertexts ci,a
represent plain Ring-A-LWE samples. Observe that the hard-
ness of decision A-LWE carries over to the ring setting in
the straightforward way8 as shown in [15]. Therefore, the

7Gentry et al. [19] originally choose this value according to the parameter
analysis from Micciancio and Regev [35].

8See Section 4.5 in [15] for an example of a BGV-based encryption scheme
that is reduced to the ring variant of A-LWE.

statement follows immediately from the hardness of decision
Ring-A-LWE: Ring-A-LWE samples are indistinguishable from
Ring-LWE samples due to [16]. Finally, decision Ring-LWE is
hard based on the hardness of worst-case lattice problems [37].
The latter holds as long as σ ≥ ω(

√
log(κ))·(κN/ log(κN))

1
4 ,

which is given by assumption. Observe that this parameter
constraint arises from Corollary 7.3 in [37], which states the
hardness assumption for decision Ring-LWE with spherical
error9.

Finally, note that vi in Step (3) is the ring-transform
of internal ciphertext c̄ from Step (2). Semantic security
and pseudo-randomness of internal ciphertexts follows from
Lemma 2 assuming the hardness of Ring-LWE. Setting σ′ =
α′q1 and Since σ′ ≥ ω(1), hardness of decision Ring-LWE is
satisfied according to Theorem 6.2 in [37] and vi is indeed
indistinguishable from random and subsequently the claim
follows.

Aggregator obliviousness is inherited from our generic LaPS
scheme (see Section IV) assuming pseudo-randomness of the
internal ciphertexts. Since the latter is part of the semantic
security of the overall scheme and we indeed prove this prop-
erty for our example instantiation in Theorem 5, aggregator
obliviousness security of our example instantiation follows
immediately. We state the corresponding theorem below.

Theorem 6 (Aggregator Obliviousness Security): Let pa-
rameters be as in Theorem 5. Then, the PSA scheme according
to Definition 13 satisfies aggregator oblivious security assum-
ing the hardness of worst case lattice problems.

Proof: This follows directly from aggregator oblivious-
ness of LaPS due to Theorem 2 when applied to the ring setting
and semantic security from Theorem 5.

Privacy & Accuracy of Aggregate Output: Suppose that γ
is the fraction of honest participants in the aggregation. Then,
assuming that all values in the data domain D are inside an
interval of width ∆ in Zp, γN users each add noise with mag-
nitude Θ(∆

ε ). In the final aggregate output this accumulates to
a total noise of roughly O(∆

ε

√
N) magnitude according to

Shi et al.’s [40] randomization procedure. Formally, we give
the following privacy and accuracy guarantees.

Theorem 7: Let ε > 0, 0 < δ < 1, ∆ ≥ ε
3 , γ ≥ 1

N ln( 1
δ )

and ς = ∆/ε. The output of AggrDec as in Definition 13 is
(ε, δ)-differentially private. Moreover, the aggregate achieves
( 4∆
ε

√
1
γ ln( 1

δ ) ln( 2
η ), η)-accuracy for all η s.t. ln( 2

η ) ≤
1
γ ln( 1

δ ).

Proof: With the chosen parameters it is straightforward to
recognize the randomization procedure in NoisyEnc according
to Definition 13 as a randomized Discrete Laplace mechanism
MDLap as in Definition 12, where the function f is the sum
function. (ε, δ)-differential privacy thus follows immediately
from ε-DP of MDLap due to Theorem 4 and differential
privacy of LaPS due to Theorem 3. Lastly, (α, β)-accuracy
follows from utility of Shi et al.’s [40] randomization proce-
dure.

9The main theorem in [37] is not applicable here as the error terms resulting
from the sampling routine Sample are spherical.
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VI. PRACTICAL PERFORMANCE

In this section we provide example parameter sets satisfying
correctness and security requirements and present experimental
results based on our implementation of the PSA scheme
according to Definition 13. Finally, we carefully compare the
practical performance of our scheme to the most closely related
prior schemes from [40] and [42] in order to put our results
into context.

A. Example parameters

Note that the parameter analysis for concrete bit-security levels
in the context of the BGV scheme also applies here since
security is based on Ring-LWE in both cases. Hence, taking
Inequality (2) and applying it to the parameters corresponding
to Rext, i.e. for Gaussian parameter σ, we get

φ(m) ≥ (k + 110) · ln(q1/σ)

7.2
, (4)

where k is the bit-security level.
Combining the correctness requirement from Inequality (3),
the hardness requirement from Theorem 5 and the bit-security
estimate from Inequality (4) yields the set of constraints for
valid parameters. Below we provide an overview of possible
parameter sets for varying security level k, plaintext modulus
p and number of users N .

Since above constraints yield a few circular dependencies
on the parameters, we calculated the remaining parameters by
fixing σ = 0.1q1 and first choosing p1 before picking10 φ(m′).
With these parameters at hand we plug in into Inequality
(3) and get p0, which gives a concrete value for q1, since
q1 = p0 · p1. Looking at Damgård et al.’s [9] instantiation of

N log(p0 = q0) log(q1 = p0 · p1)
100 31 36

1000 34 39
10000 38 43

Fig. 3: Parameters for p ≈ 216 and k = 80,
φ(m′) = 32, φ(m) ≈ 211, p1 ≈ 25

N log(p0 = q0) log(q1 = p0 · p1)
100 48 63

1000 49 64
10000 52 67

Fig. 4: Parameters for p ≈ 232 and k = 128,
φ(m′) = 8192, φ(m) ≈ 220, p1 ≈ 215

N log(p0 = q0) log(q1 = p0 · p1)
10000 146 196
1015 151 201
1021 171 221

Fig. 5: Parameters for p ≈ 2128 and k = 80,
φ(m′) = 32768, φ(m) ≈ 224, p1 ≈ 250

the BGV scheme for the same parameters k, p and φ(m′), our

10Note that the first two constraints depend on q1 but are easily satisfied
as long as q1 � φ(m′).

instantiation (see Figure 4) allows for much smaller moduli,
i.e. our q1 has magnitude 263 for 100 users compared to
2252 in [9, Appendix G.4]. This improvement draws from
the highly relaxed correctness requirement, i.e. Inequality (1).
Since we do not require correct evaluation of homomorphic
multiplication our constraint is much less restrictive.

Note that for large enough moduli p and q1 the number of
users can grow to a large extent without significantly affecting
the other parameters as shown in Figure 5. It is in that sense
therefore highly scalable in the number of participants.

B. Implementation

We implemented our PSA scheme according to Definition 13
on a MacBook running macOS Sierra with a single 2.5 GHz
Intel Core i7 and 16GB memory using part of the HElib C++
library11.

p NoisyEnc (ms) AggrDec (ms)
(i) 5 ≈ 22 3.57646 1.86864
(i) 37 ≈ 25 3.61646 1.882
(i) 65537 ≈ 216 3.72438 1.96416
(ii) 65537 ≈ 216 77.3304 67.6243

Fig. 6: Results for N = 1000,
(i) k = 80, φ(m′) = 32, φ(m) = 2048,

(ii) k = 128, φ(m′) = 512, φ(m) ≈ 215, q1 ≈ 244

We use a parameter set satisfying both correctness and
security requirements for k = 80-bit security, i.e. with mag-
nitudes according to Figure 3, and a selection of plaintext
spaces p ≤ 216 for setting (i). Note that this parameter
selection can be used for example in order to compute the
average age of 1000 people assuming that each person is at
most 65 years old12. We measured the average encryption
and decryption time over 1000 runs each for N = 1000
participants in milliseconds. For completeness, we also ran
experiments for k = 128-bit security and plaintext space
p ≈ 216 (setting (ii)). The results along with the concrete
parameters are shown in Figure 6. We chose target DP-
parameters ε = 1, δ = 0.1, which results in a minimum
fraction of honest participants γ ≥ 0.0023, i.e. at least 3 out of
1000 participants have to remain uncompromised. Finally, due
to Theorem 7 and when choosing η = 2/ exp(10) we achieve
(400 · (p − 1), 2/ exp(10))-accuracy, where the accumulated
sum does not exceed 1000 · (p− 1).

To the best of our knowledge none of the previously pro-
posed PSA schemes that are comparable to ours13, including
the scheme introduced by Shi et al. [40] and the LWE-based
scheme from Valovich [42], were implemented. Nevertheless
both works provide rough guidelines for evaluating accuracy
of the final output and performance of the scheme in practice,
which we use as a baseline for comparison.

11https://github.com/shaih/HElib
12According to [7] the majority of Americans, i.e. 85.9 %, is under 65

years old.
13Runtime measurements are given in [29] based on implementation results.

However, their scheme accounts for dynamic user leaves and joins, which our
scheme does not currently address. Therefore we do not consider their results
to be comparable.
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Valovich and Alda [43] compare the accuracy of different
noise distributions when embedded into a privacy-preserving
mechanism: they conclude that the Geometric mechanism,
i.e. our MDLap according to Definition 12, and the Skellam
mechanism, which is used in Valovich’s [42] scheme, are
comparable in terms of accuracy (while using the Binomial
distribution is significantly less accurate). As mentioned before
we cannot compare our scheme to theirs in terms of runtime
since no experimental results are available to this extent.

Shi et al. [40] estimate the time it takes to encrypt
with roughly 6ms when using a classic Diffie-Hellman group
modular a 1024-bit prime or roughly 0.6 ms using high-
speed elliptic curves. While we clearly outperform the former
(compare at parameter setting (i)), our scheme would be
slower than an elliptic-curve based implementation of Shi et
al.’s PSA scheme by a factor of roughly 6. On the other
hand, the decryption operation in their scheme takes about 0.3
s for 1000 participants using a brute-force approach. Hence,
our decryption is more than 150 times faster. Additionally,
note that their result is based on the assumption that each
participant encrypts a single bit, whereas our plaintext space
is much larger, i.e. we allow for encryption of up to 16 bits.
Lastly, while we don’t have a direct comparison for the 128-
bit security level, our experimental results indicate practical
runtimes for this setting as well.

VII. EXTENSIONS

Prior work has produced some extensions to the standard
sum aggregation case. Concretely, [40] describes how to adapt
their scheme in order to allow for the evaluation of user data
distribution, enable public access to the aggregate output, i.e.
aggregation without an explicit aggregating party, or support
hierarchical access control to the aggregates of subsets of the
user data.

Chan et al. [8] develop on Shi et al.’s [40] scheme and
address the problem of user failures, i.e. ensuring correct
decryption even when some users do not participate in the
aggregation. They achieve this by essentially grouping the
users into sub-groups and structuring these into a binary tree
at some cost of the accuracy of the output and communication
overhead. We expect that the same techniques would also apply
to our scheme in a straightforward way.

In principle, our scheme can also be extended to computing
the product aggregate. This would require a multiplicatively
homomorphic encryption scheme as the respective building
block14. In fact, if a fully homomorphic encryption scheme
is used, both addition and multiplication and therefore richer
statistics could be supported. Since we circumvent the problem
of using homomorphic operations under multiple keys, this
would address the corresponding open problem from Shi et
al.’s [40]. However, the extent of the statistical capabilities
remains constrained by the limits of the used homomorphic
scheme (and requires some additional adjustments in the
formulation of the aggregator’s decryption key).

14Additionally, the aggregator’s decryption key needs to be defined slightly
differently: it has to be the multiplicative inverse of the product of the users’
secret keys.

VIII. CONCLUSION

Private stream aggregation captures the problem of performing
aggregation operations over data from different users in a
privacy-friendly manner without a trusted aggregator. In this
work we presented LaPS that in contrast to most prior work
provides privacy and security guarantees even against quantum
adversaries. We formulated our scheme in a generic way
that allows for a flexible choice of homomorphic encryption
and privacy-preserving mechanism depending on the partic-
ular application’s needs while maintaining strong security
and privacy guarantees. In fact, our formal security analysis
proves that we are additionally able to abolish assumptions
from previously defined security models, such as the encrypt-
once model required by [40]. Furthermore, we presented a
concrete instantiation using the BGV somewhat homomorphic
encryption scheme and the discrete Laplace mechanism. Our
implementation results show that our scheme is compact and
efficient: it significantly improves over prior work in terms of
run time.
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[9] I. Damgård, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical Covertly Secure MPC for Dishonest Majority or : Breaking
the SPDZ Limits,” in Eur. Symp. Res. Comput. Secur., 2013, pp. 1–18.

[10] G. Danezis, C. Fournet, M. Kohlweiss, and S. Zanella-Béguelin, “Smart
meter aggregation via secret-sharing,” Proc. first ACM Work. Smart
energy grid Secur. - SEGS ’13, pp. 75–80.

[11] J. Ding, X. Xie, and X. Lin, “A Simple Provably Secure Key Exchange
Scheme Based on the Learning with Errors Problem,” IACR Cryptol.
ePrint Arch.
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APPENDIX

Proof of Theorem 4: Let D0 ∈ Dn and D1 ∈ Dn be ad-
jacent databases, and let f(·) be some function f : Dn → Rk
and ∆f = maxD0,D1 adjacent ‖f(D0)− f(D1)‖1. Comparison
at some arbitrary point z ∈ Rk yields

Pr[MDLap(D0, f, ε) = z]

Pr[MDLap(D1, f, ε) = z]
=

k∏
i=1

(
exp(− ε|zi−f(D0)i|

∆f )

exp(− ε|zi−f(D1)i|
∆f )

)

=

k∏
i=1

exp

(
ε(|zi − f(D1)i| − |zi − f(D0)i|)

∆f

)

≤
k∏
i=1

exp

(
ε|f(D0)i − f(D1)i|

∆f

)

= exp

(
ε‖f(D0)− f(D1)‖1

∆f

)
≤ exp(ε)

Similarly, Pr[MDLap(D1,f,ε)=z]
Pr[MDLap(D0,f,ε)=z]

≥ exp(−ε) by symmetry.

Proof of Theorem 2: Note that this property (together
with Theorem 1) targets the security of the PSA scheme
as opposed to its privacy. It is independent of the used
randomization procedure that adds noise to the users’ values.
We therefore assume that a potential adversary can choose
the noise ri as part of the Challenge phase in the respective
security game as specified in Definition 6. Concretely, we
adopt the notation NoisyEnci(pk,g

T , si,A, di, ri) for directly
setting xi = di + ri mod q and encrypting xi. This is in line
with previous work, such as Shi et al.’s PSA scheme, which
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is proven to be aggregator oblivious independent of the used
randomization procedure [40].

Using Theorem 1 above it suffices to show: If there exists
a PPT adversary A that wins the aggregator obliviousness
security game, then there exists a PPT adversary B that can
solve the decision A-LWEfκ,λ,σ , i.e. distinguish an A-LWEκ,λ,σ
sample from a uniformly random sample over Zκ×λq × Zλq .

We define the following intermediate game Game similar
to [40] that is indistinguishable from the aggregator oblivi-
ousness security game according to Definition 6: First, we
treat any Encrypt query as a Compromise query from the
adversary. Clearly, this turns the adversary actually more
powerful. Secondly, we change the Challenge phase to its real-
or-random version, i.e. instead of having the adversary specify
two sets of plaintext-randomness pairs {(di, ri)} and {(d′i, r′i)}
and have her distinguish between encryptions of either one,
we let the adversary pick one set {(di, ri)} and have her
distinguish between a set of valid encryptions and a set of
random values in Zλq . It is straightforward that any adversary
with more than negligible advantage in winning Game will
also win the aggregator obliviousness security game with more
than negligible advantage. Therefore, it suffices to show that
with a PPT adversary A with more than negligible advantage
in winning Game we can construct an algorithm B that solves
decision A-LWEfκ,λ,σ with more than negligible advantage.

Remark 4: Note that in the case where the adversary
compromises all but one participant, she inevitably learns the
secret key of that participant and can therefore distinguish
between valid encryptions and random values. In this case the
definition of aggregator obliviousness requires that she does
not learn any additional information about that participant. As
stated in Definition 6 this requirement translates into a privacy
rather than a security guarantee. Therefore, we address it in
the corresponding Theorem 3.

Suppose B receives the parameters κ, λ, σ and function f and
plays the standard real-or-random game with challenger C who
tests B’s ability of solving the decision A-LWE problem. Hence
C possesses an A-LWE distribution LA-LWE

κ,λ,σ and can generate
A-LWE samples (A,bT = s∗TA + eT ) for some m ∈ Zq ,
where s∗ ∈ Zκq is the secret, A is a public matrix in Zκ×λq and
the error term e ∈ Zλq embeds the message m. In the game
B is allowed to make Sample queries, where she provides
an m ∈ Zq to C who generates an A-LWE sample from L
accordingly and returns it to B. In the Distinguish phase B
picks a new message m∗ ∈ Zq and sends it to C. C then
flips a random coin b: if b = 0, generate a valid A-LWE
sample embedding m∗ from L, otherwise draw b uniformly
at random from Zλq and send the tuple (A,bT ) to B. Finally,
B outputs her guess whether b was 0 or 1. She wins the
game and hence solves decision A-LWEfκ,λ,σ if her guess of
b is correct. Note that f is defined as AHOM.Enc, where
AHOM = (Gen,Enc,Dec).
Setup. B takes A, gT = (1, 2, . . . , 2λ−1) and (sk, pk) ←
AHOM. Gen that she has received from prior interaction with
C and sends A,gT and pk to A as the public parameters.
Then, B randomly chooses two distinct indices j and k from
{0, . . . , N}. The chance of picking the right ones is 1

N2 ,

otherwise B aborts during the game. She sets

sk := ((bT − eT )A−1)T .

Hence, sk is the secret s∗. Note that sk is unknown to B. B
samples the users’ secret keys {si

$← Zκq }
i 6=j
i 6=k and sets

sj := −
∑
i 6=j

si = −(
∑
i6=j,
i 6=k

si + sk).

This comes from the inherent requirement of the PSA protocol∑N
i=0 si = 0. Note that sj is also unknown to B.

Lastly, B picks skA1

$← {si}i6=ji6=k and sets skA2
:= sk. Note

that for the first aggregator key it indeed does not matter which
si is chosen, since we ensure that

∑N
i=0 si = 0 by choosing

sj according to Equation (A).
Compromise. On request i from A and if i 6= j, i 6= k B
sends the corresponding si to A. If additionally i = 0 B sends
(skA1 , skA2). Otherwise B aborts. Let K be the set of all
compromised users K = {i}.
Challenge. A picks a set of uncompromised users U ⊆
{0, . . . , N}\K and plaintext-randomness pairs {(di, ri)}i∈U
and transmits these to B. Note that by construction {j, k} ⊆ U .
B computes

{ci = NoisyEnc(pk,gT , si,A, di, ri)}i∈U\{j,k}.

Now B enters the Distinguish-phase and sends m = dk + rk
mod q to C who returns the tuple (A,bT ). B sets ck := bT .
Note that

∑
i∈U ci +

∑
i/∈U sTi ·A =

∑
i∈U ei and that

AHOM.Dec(G ·
∑
i∈U

ei mod q)
!
=
∑
i∈U

di + ri.

Therefore, B first computes a valid encryption of
∑
i∈U di+ri,

i.e.
v = AHOM.Enc(pk,

∑
i∈U

di + ri) ∈ Zλ/lq

and then sets

cj := G−1 · v −
∑

i∈U\{j}

ci −
∑
i/∈U

sTi ·A.

Note that we compute the left inverse of G such that G−1·G =
Iλ. Finally, B sends all {ci}i∈U to A.
Guess. If A has more than negligible advantage in winning the
aggregator obliviousness security game, she can distinguish the
ciphertexts from random. Specifically, if ck = bT is indeed
a valid A-LWE sample it is a valid encryption of (dk, rk)
and A will return 0, otherwise she returns 1. Therefore, by
forwarding A’s output to C as her guess, B wins the game:
she can distinguish bT from random and solve decision A-
LWEfκ,λ,σ .

Correctness of Adapted BGV: Following the parameter
analysis in [19] and [9], we first analyze the expected mag-
nitudes of values sampled from the distributions listed above
Definition 11 before estimating the noise generated in each
part of the scheme.

For our particular ring setting where R = Z[X]/Φm(X)
and is set as a power of 2 we bound the p-norm of a ring
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element x ∈ R using its canonical embedding can(x) : R →
Cφ(m), i.e. ||x||∞ ≤ ||x||can∞ ≤ ||x||1, where ||x||can∞ =
||can(x)||∞. can maps a ring element x to a φ(m)-vector
where each coefficient is an evaluation of x on the complex
primitive m-th root of unity ζim over all i ∈ (Z/mZ)∗.

Sampling x ∈ R from ZO(0.5, φ(m)) generates a random
variable with variance VarZ = 1

2φ(m). With distribution
DG(σ′2, φ(m)) we get VarG = σ′2 · φ(m) and U(q, φ(m))

yields VarU = q2

12 · φ(m).

By the law of large numbers, ||x||can∞ is bounded by
6 ·
√
Vari w.h.p., since erfc(6) ≈ 2−55, where i ∈ {Z,G,U}

depending on which distribution x is sampled from. For two
such elements x, y ∈ R with variances Var(can(x)) and
Var(can(y)) respectively, we bound the product ||x · y||can∞
by 16 ·

√
Var(can(x)) · Var(can(y)), since erfc(4)2 ≈ 2−50.

Consequently, we get the following bounds on the secret key s
and the public key components a and ε from the key generation
routine BGV.Gen according to Definition 11:

Var(can(a)) = VarU =
q2
1

12
· φ(m)

Var(can(s)) = VarG = σ′2 · φ(m)

Var(can(ε)) = VarG = σ′2 · φ(m).

As in [9] we define the noise of a ciphertext c = (c0, c1) as
an upper bound on ||c0 − s · c1||can∞ . In the following we look
at the noise from “fresh” ciphertexts, i.e. those generated by
BGV.Enc, and the noise in reduced ciphertexts, i.e. outputs of
SwitchModulus that is invoked during decryption in BGV.Dec
bounded according to Definition 11.
Fresh ciphertexts. If c = (c0, c1) = BGV.Enc(pk, µ) then the
noise in c is bounded by

||c0 − s · c1||∞ ≤ ||c0 − s · c1||can∞
= ||(a · s+ p · ε) · v + p · e0 + µ− s · (a · v + p · e1)||can∞
= ||µ+ p · (ε · v + e0 − e1 · s)||can∞
≤ ||µ||can∞ + p · (||ε · v||can∞ + ||e0||can∞ + ||e1 · s||can∞ )

≤ φ(m) · (p− 1) + p ·
(

16 ·
√
σ′2 · φ(m) · 1

2
· φ(m) +

6 ·
√
σ′2 · φ(m) + 16 ·

√
σ′2 · φ(m) · σ′2 · φ(m)

)
= φ(m) · (p− 1) + 2pσ′ · ((8 + 4

√
2) · φ(m) + 3 ·

√
φ(m))

= Bclean.

Reduced ciphertexts. If input ciphertext c has noise ν then
output ciphertext c′ = SwitchModulus(c0, c1) has noise ν′

where ν′ = q0
q1
· ν + Bscale = ν

p1
+ Bscale. Recall that

q0 = p0 ·p1. Bscale captures overhead noise from the rounding
error caused by reducing to modulus q1 = p1. Let τ = (τ0, τ1)
be the rounding error, i.e. (τ0, τ1) = (c′0, c

′
1)− q0

q1
(c0, c1). Then,

can(τi) is roughly distributed according to a complex Gaussian
with variance p2

12 · φ(m). Therefore,

||τ0+τ1 ·s||can∞ ≤ 1√
3
·p·(3·

√
φ(m)+σ′ ·φ(m)) = Bscale.

Sum of ciphertexts. Summing ciphertexts c1, . . . , cN with
noises ν1, . . . , νN respectively, results in overall noise ν =∑N
i=1 νi.

BGV.Dec takes a sum of some N ciphertexts c =
∑N
i=1 ci

as input, where each ci ← BGV.Enc is a fresh ciphertext.
Then c is reduced to c′ using SwitchModulus(c, q1, q0) and
the plaintext is retrieved via (c′0 − s · c′1 mod q0) mod p.
Therefore, in order to decrypt correctly ν′ < q0

2 = p0
2 , where

ν′ is the noise associated to c′. We can bound ν′ using the
bounds given above:

ν′ ≤ N ·Bclean
p1

+Bscale

=
N ·

(
φ(m) · (p− 1) + 2pσ′ · ((8 + 4

√
2) · φ(m) + 3 ·

√
φ(m))

)
p1

+
1√
3
· p · (3 ·

√
φ(m) + σ′ · φ(m)).
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